Loading…
Intermediate monomer–dimer equilibrium structure of native ICAM-1: Implication for enhanced cell adhesion
Dimeric intercellular adhesion molecule-1 (ICAM-1) has been known to more efficiently mediate cell adhesion than monomeric ICAM-1. Here, we found that truncation of the intracellular domain of ICAM-1 significantly enhances surface dimerization based on the two criteria: 1) the binding degree of mono...
Saved in:
Published in: | Experimental cell research 2011-01, Vol.317 (2), p.163-172 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Dimeric intercellular adhesion molecule-1 (ICAM-1) has been known to more efficiently mediate cell adhesion than monomeric ICAM-1. Here, we found that truncation of the intracellular domain of ICAM-1 significantly enhances surface dimerization based on the two criteria: 1) the binding degree of monomer-specific antibody CA-7 and 2) the ratio of dimer/monomer when a mutation (L42
→
C42) was introduced in the interface of domain 1. Mutation analysis revealed that the positively charged amino acids, including very membrane-proximal
505R, are essential for maintaining the structural transition between the monomer and dimer. Despite a strong dimer presentation, the ICAM-1 mutants lacking an intracellular domain (IC1ΔCTD) or containing R to A substitution in position 505 (
505R/A) supported a lower degree of cell adhesion than did wild-type ICAM-1. Collectively, these results demonstrate that the native structure of surface ICAM-1 is not a dimer, but is an intermediate monomer–dimer equilibrium structure by which the effectiveness of ICAM-1 can be fully achieved. |
---|---|
ISSN: | 0014-4827 1090-2422 |
DOI: | 10.1016/j.yexcr.2010.10.004 |