Loading…

Dietary isoflavones and vascular protection: Activation of cellular antioxidant defenses by SERMs or hormesis?

During the past decade nutrigenomic studies in humans, animal models and cultured cells have provided important and novel insights into the mechanisms by which dietary isoflavones afford protection against vascular dysfunction through the amelioration of oxidative modifications and upregulation of e...

Full description

Saved in:
Bibliographic Details
Published in:Molecular aspects of medicine 2010-12, Vol.31 (6), p.468-477
Main Authors: Siow, Richard C.M., Mann, Giovanni E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:During the past decade nutrigenomic studies in humans, animal models and cultured cells have provided important and novel insights into the mechanisms by which dietary isoflavones afford protection against vascular dysfunction through the amelioration of oxidative modifications and upregulation of endogenous antioxidant signaling pathways. In this review, we highlight that increased generation of nitric oxide (NO) and reactive oxygen species (ROS) in the vessel wall in response to dietary isoflavones enhance the activity of antioxidant defense enzymes in endothelial and smooth muscle cells. The estrogenic properties of isoflavones are likely to contribute to the molecular mechanisms by which these compounds activate signal transduction pathways involved in sustaining endothelial function and transcriptional activation of antioxidant defense genes in vascular cells. We evaluate the recent literature that estrogenic and hormetic properties of phytoestrogens are of benefit for the maintenance of vascular function, and conclude that dietary isoflavones can protect against cardiovascular diseases by virtue of their ability to activate signaling pathways leading to increased NO bioavailability and regulation of phase II and antioxidant enzyme expression via the redox sensitive transcription factor Nrf2. In context of epigenetics and the developmental origins of adult disease, it is noteworthy that exposure to dietary soy during fetal development reduces the susceptibility to CVD and obesity in adulthood. Thus, the Nrf2/Keap1 defense pathway provides a key mechanism by which isoflavones can act as hormetic agents to modulate intracellular redox signaling in the vasculature to prolong healthspan and reduce the incidence of age-related cardiovascular diseases.
ISSN:0098-2997
1872-9452
DOI:10.1016/j.mam.2010.09.003