Loading…
Coating Colloidal Carbon Spheres with CdS Nanoparticles: Microwave-Assisted Synthesis and Enhanced Photocatalytic Activity
This manuscript describes the accurate coating of CdS nanoparticles on the surface of colloidal carbon spheres by a facile two-step, microwave-assisted method and the studies on the photocatalytic activity of the C@CdS core−shell spheres. For the coating of CdS nanoparticles, cadmium ions were incor...
Saved in:
Published in: | Langmuir 2010-12, Vol.26 (23), p.18570-18575 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This manuscript describes the accurate coating of CdS nanoparticles on the surface of colloidal carbon spheres by a facile two-step, microwave-assisted method and the studies on the photocatalytic activity of the C@CdS core−shell spheres. For the coating of CdS nanoparticles, cadmium ions were incorporated into the hydrophilic shell of colloidal carbon spheres and reacted with an introduced sulfur source under a microwave field to obtain the C@CdS hybrid spheres. Using this process, the as-prepared hybrid structures preserved the good dispersity and uniformity of initial carbon spheres, and the thickness of the CdS nanoparticles shell could be varied or controlled by the irradiation time. A photoluminescence spectrum showed that the C@CdS hybrid spheres feature a broad green emission at around 494 nm (λex = 337 nm). Additionally, CdS nanospheres were successfully prepared in aqueous solution via a microwave-assisted route, and the effect of irradiation time on the products was also investigated. The studies of the photocatalytic property demonstrate that these fabricated functional hybrid structures evinced a higher photocatalytic degradation activity when exposed to visible light irradiation than that of CdS nanospheres under the same conditions. |
---|---|
ISSN: | 0743-7463 1520-5827 |
DOI: | 10.1021/la103191y |