Loading…

Existence of singularity bifurcation in an Euler-equations model of the United States economy: Grandmont was right

Grandmont (1985) found that the parameter space of the most classical dynamic general-equilibrium macroeconomic models are stratified into an infinite number of subsets supporting an infinite number of different kinds of dynamics, from monotonic stability at one extreme to chaos at the other extreme...

Full description

Saved in:
Bibliographic Details
Published in:Economic modelling 2010-11, Vol.27 (6), p.1345-1354
Main Authors: Barnett, William A., He, Susan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Grandmont (1985) found that the parameter space of the most classical dynamic general-equilibrium macroeconomic models are stratified into an infinite number of subsets supporting an infinite number of different kinds of dynamics, from monotonic stability at one extreme to chaos at the other extreme, and with all forms of multiperiodic dynamics between. But Grandmont provided his result with a model in which all policies are Ricardian equivalent, no frictions exist, employment is always full, competition is perfect, and all solutions are Pareto optimal. Hence he was not able to reach conclusions about the policy relevance of his dramatic discovery. As a result, Barnett and He (1999, 2001, 2002) investigated a Keynesian structural model, and found results supporting Grandmont's conclusions within the parameter space of the Bergstrom–Wymer continuous-time dynamic macroeconometric model of the UK economy. That prototypical Keynesian model was produced from a system of second order differential equations. The model contains frictions through adjustment lags, displays reasonable dynamics fitting the UK economy's data, and is clearly policy relevant. In addition, results by Barnett and Duzhak (2010) demonstrate the existence of Hopf and flip (period doubling) bifurcation within the parameter space of recent New Keynesian models. Lucas-critique criticism of Keynesian structural models has motivated development of Euler equations models having policy-invariant deep parameters, which are invariant to policy rule changes. Hence, we continue the investigation of policy-relevant bifurcation by searching the parameter space of the best known of the Euler equations general-equilibrium macroeconometric models: the path-breaking Leeper and Sims (1994) model. We find the existence of singularity bifurcation boundaries within the parameter space. Although never before found in an economic model, singularity bifurcation may be a common property of Euler equations models, which often do not have closed form solutions. Our results further confirm Grandmont's views. Beginning with Grandmont's findings with a classical model, we continue to follow the path from the Bergstrom–Wymer policy-relevant Keynesian model, to New Keynesian models, and now to Euler equations macroeconomic models having deep parameters.
ISSN:0264-9993
1873-6122
DOI:10.1016/j.econmod.2010.07.020