Loading…
Oxidized Cholesteryl Esters and Phospholipids in Zebrafish Larvae Fed a High Cholesterol Diet
A novel hypercholesterolemic zebrafish model has been developed to study early events of atherogenesis. This model utilizes optically transparent zebrafish larvae, fed a high cholesterol diet (HCD), to monitor processes of vascular inflammation in live animals. Because lipoprotein oxidation is an im...
Saved in:
Published in: | The Journal of biological chemistry 2010-10, Vol.285 (42), p.32343-32351 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A novel hypercholesterolemic zebrafish model has been developed to study early events of atherogenesis. This model utilizes optically transparent zebrafish larvae, fed a high cholesterol diet (HCD), to monitor processes of vascular inflammation in live animals. Because lipoprotein oxidation is an important factor in the development of atherosclerosis, in this study, we characterized the oxidized lipid milieu in HCD-fed zebrafish larvae. Using liquid chromatography-mass spectrometry, we show that feeding an HCD for only 2 weeks resulted in up to 70-fold increases in specific oxidized cholesteryl esters, identical to those present in human minimally oxidized LDL and in murine atherosclerotic lesions. The levels of oxidized phospholipids, such as 1-palmitoyl-2-oxovaleroyl-sn-glycero-3-phosphocholine, and of various lysophosphatidylcholines were also significantly elevated. Moreover, lipoproteins isolated from homogenates of HCD-fed larvae induced cell spreading as well as ERK1/2, Akt, and JNK phosphorylation in murine macrophages. Removal of apoB-containing lipoproteins from the zebrafish homogenates with an anti-human LDL antibody, as well as reducing lipid hydroperoxides with ebselen, resulted in inhibition of macrophage activation. The TLR4 deficiency in murine macrophages prevented their activation with zebrafish lipoproteins. Using biotinylated homogenates of HCD-fed larvae, we demonstrated that their components bound to murine macrophages, and this binding was effectively competed by minimally oxidized LDL but not by native LDL. These data provide evidence that molecular lipid determinants of proatherogenic macrophage phenotypes are present in large quantities in hypercholesterolemic zebrafish larvae and support the use of the HCD-fed zebrafish as a valuable model to study early events of atherogenesis. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M110.137257 |