Loading…

Coherent Detection of Swerling 0 Targets in Sea-Ice Weibull-Distributed Clutter Using Neural Networks

The detection of Swerling 0 targets in movement in sea-ice Weibull-distributed clutter by neural networks (NNs) is presented in this paper. Synthetic data generated for typical sea-ice Weibull parameters reported in the literature are used. Due to the capability of NNs for learning the statistical p...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on instrumentation and measurement 2010-12, Vol.59 (12), p.3139-3151
Main Authors: Vicen-Bueno, R, Rosa-Zurera, M, Jarabo-Amores, M P, de la Mata-Moya, David
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c356t-8cf42394a5514592d45f8cd4a24ee1bcab66aa68bea8b05b163352a88fa1cddf3
cites cdi_FETCH-LOGICAL-c356t-8cf42394a5514592d45f8cd4a24ee1bcab66aa68bea8b05b163352a88fa1cddf3
container_end_page 3151
container_issue 12
container_start_page 3139
container_title IEEE transactions on instrumentation and measurement
container_volume 59
creator Vicen-Bueno, R
Rosa-Zurera, M
Jarabo-Amores, M P
de la Mata-Moya, David
description The detection of Swerling 0 targets in movement in sea-ice Weibull-distributed clutter by neural networks (NNs) is presented in this paper. Synthetic data generated for typical sea-ice Weibull parameters reported in the literature are used. Due to the capability of NNs for learning the statistical properties of the clutter and target signals during a supervised training, high clutter reduction rates are achieved, reverting on high detection performances. The proposed NN-based detector is compared with a reference detector proposed in the literature that approximates the Neyman-Pearson (NP) detector. The results presented in the paper allow empirically demonstrating how the NN-based detector outperforms the detector taken as reference in all the cases under study. It is achieved not only in performance but also in robustness with respect to changes in sea-ice Weibull-distributed clutter conditions. Moreover, the computational cost of the NN-based detector is very low, involving high signal processing speed.
doi_str_mv 10.1109/TIM.2010.2047579
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_817609913</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5580097</ieee_id><sourcerecordid>2724147541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-8cf42394a5514592d45f8cd4a24ee1bcab66aa68bea8b05b163352a88fa1cddf3</originalsourceid><addsrcrecordid>eNp9kctLxDAQh4MouD7ugpeAB71UJ82jyVHW14KPw-7isaTpVKu11SRF_O_NsuLBg6ffDHy_geEj5IDBKWNgzhazu9Mc0paDKGRhNsiESVlkRql8k0wAmM6MkGqb7ITwAgCFEsWE4HR4Ro99pBcY0cV26OnQ0Pkn-q7tnyjQhfVPGANtezpHm80c0kdsq7Hrsos2RJ_GiDWddmOM6OkyrGr3OHrbpYifg38Ne2SrsV3A_Z_cJcury8X0Jrt9uJ5Nz28zx6WKmXaNyLkRVkompMlrIRvtamFzgcgqZyulrFW6QqsrkBVTnMvcat1Y5uq64bvkeH333Q8fI4ZYvrXBYdfZHocxlJoVCoxhPJEn_5JMFSzXDJRO6NEf9GUYfZ_-KBlwYJKDXFGwppwfQvDYlO--fbP-K0HlylCZDJUrQ-WPoVQ5XFdaRPzFpdQApuDfbw-L8Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1030153058</pqid></control><display><type>article</type><title>Coherent Detection of Swerling 0 Targets in Sea-Ice Weibull-Distributed Clutter Using Neural Networks</title><source>IEEE Xplore (Online service)</source><creator>Vicen-Bueno, R ; Rosa-Zurera, M ; Jarabo-Amores, M P ; de la Mata-Moya, David</creator><creatorcontrib>Vicen-Bueno, R ; Rosa-Zurera, M ; Jarabo-Amores, M P ; de la Mata-Moya, David</creatorcontrib><description>The detection of Swerling 0 targets in movement in sea-ice Weibull-distributed clutter by neural networks (NNs) is presented in this paper. Synthetic data generated for typical sea-ice Weibull parameters reported in the literature are used. Due to the capability of NNs for learning the statistical properties of the clutter and target signals during a supervised training, high clutter reduction rates are achieved, reverting on high detection performances. The proposed NN-based detector is compared with a reference detector proposed in the literature that approximates the Neyman-Pearson (NP) detector. The results presented in the paper allow empirically demonstrating how the NN-based detector outperforms the detector taken as reference in all the cases under study. It is achieved not only in performance but also in robustness with respect to changes in sea-ice Weibull-distributed clutter conditions. Moreover, the computational cost of the NN-based detector is very low, involving high signal processing speed.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2010.2047579</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Approximation ; Artificial intelligence ; Clutter ; clutter reduction ; Coherence ; Computational efficiency ; detection ; Detectors ; Instrumentation ; Learning ; Neural networks ; neural networks (NNs) ; radar ; Radar antennas ; Radar cross section ; Remote sensing ; Robustness</subject><ispartof>IEEE transactions on instrumentation and measurement, 2010-12, Vol.59 (12), p.3139-3151</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-8cf42394a5514592d45f8cd4a24ee1bcab66aa68bea8b05b163352a88fa1cddf3</citedby><cites>FETCH-LOGICAL-c356t-8cf42394a5514592d45f8cd4a24ee1bcab66aa68bea8b05b163352a88fa1cddf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5580097$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,54783</link.rule.ids></links><search><creatorcontrib>Vicen-Bueno, R</creatorcontrib><creatorcontrib>Rosa-Zurera, M</creatorcontrib><creatorcontrib>Jarabo-Amores, M P</creatorcontrib><creatorcontrib>de la Mata-Moya, David</creatorcontrib><title>Coherent Detection of Swerling 0 Targets in Sea-Ice Weibull-Distributed Clutter Using Neural Networks</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>The detection of Swerling 0 targets in movement in sea-ice Weibull-distributed clutter by neural networks (NNs) is presented in this paper. Synthetic data generated for typical sea-ice Weibull parameters reported in the literature are used. Due to the capability of NNs for learning the statistical properties of the clutter and target signals during a supervised training, high clutter reduction rates are achieved, reverting on high detection performances. The proposed NN-based detector is compared with a reference detector proposed in the literature that approximates the Neyman-Pearson (NP) detector. The results presented in the paper allow empirically demonstrating how the NN-based detector outperforms the detector taken as reference in all the cases under study. It is achieved not only in performance but also in robustness with respect to changes in sea-ice Weibull-distributed clutter conditions. Moreover, the computational cost of the NN-based detector is very low, involving high signal processing speed.</description><subject>Approximation</subject><subject>Artificial intelligence</subject><subject>Clutter</subject><subject>clutter reduction</subject><subject>Coherence</subject><subject>Computational efficiency</subject><subject>detection</subject><subject>Detectors</subject><subject>Instrumentation</subject><subject>Learning</subject><subject>Neural networks</subject><subject>neural networks (NNs)</subject><subject>radar</subject><subject>Radar antennas</subject><subject>Radar cross section</subject><subject>Remote sensing</subject><subject>Robustness</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kctLxDAQh4MouD7ugpeAB71UJ82jyVHW14KPw-7isaTpVKu11SRF_O_NsuLBg6ffDHy_geEj5IDBKWNgzhazu9Mc0paDKGRhNsiESVlkRql8k0wAmM6MkGqb7ITwAgCFEsWE4HR4Ro99pBcY0cV26OnQ0Pkn-q7tnyjQhfVPGANtezpHm80c0kdsq7Hrsos2RJ_GiDWddmOM6OkyrGr3OHrbpYifg38Ne2SrsV3A_Z_cJcury8X0Jrt9uJ5Nz28zx6WKmXaNyLkRVkompMlrIRvtamFzgcgqZyulrFW6QqsrkBVTnMvcat1Y5uq64bvkeH333Q8fI4ZYvrXBYdfZHocxlJoVCoxhPJEn_5JMFSzXDJRO6NEf9GUYfZ_-KBlwYJKDXFGwppwfQvDYlO--fbP-K0HlylCZDJUrQ-WPoVQ5XFdaRPzFpdQApuDfbw-L8Q</recordid><startdate>201012</startdate><enddate>201012</enddate><creator>Vicen-Bueno, R</creator><creator>Rosa-Zurera, M</creator><creator>Jarabo-Amores, M P</creator><creator>de la Mata-Moya, David</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>201012</creationdate><title>Coherent Detection of Swerling 0 Targets in Sea-Ice Weibull-Distributed Clutter Using Neural Networks</title><author>Vicen-Bueno, R ; Rosa-Zurera, M ; Jarabo-Amores, M P ; de la Mata-Moya, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-8cf42394a5514592d45f8cd4a24ee1bcab66aa68bea8b05b163352a88fa1cddf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Approximation</topic><topic>Artificial intelligence</topic><topic>Clutter</topic><topic>clutter reduction</topic><topic>Coherence</topic><topic>Computational efficiency</topic><topic>detection</topic><topic>Detectors</topic><topic>Instrumentation</topic><topic>Learning</topic><topic>Neural networks</topic><topic>neural networks (NNs)</topic><topic>radar</topic><topic>Radar antennas</topic><topic>Radar cross section</topic><topic>Remote sensing</topic><topic>Robustness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vicen-Bueno, R</creatorcontrib><creatorcontrib>Rosa-Zurera, M</creatorcontrib><creatorcontrib>Jarabo-Amores, M P</creatorcontrib><creatorcontrib>de la Mata-Moya, David</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vicen-Bueno, R</au><au>Rosa-Zurera, M</au><au>Jarabo-Amores, M P</au><au>de la Mata-Moya, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coherent Detection of Swerling 0 Targets in Sea-Ice Weibull-Distributed Clutter Using Neural Networks</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2010-12</date><risdate>2010</risdate><volume>59</volume><issue>12</issue><spage>3139</spage><epage>3151</epage><pages>3139-3151</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>The detection of Swerling 0 targets in movement in sea-ice Weibull-distributed clutter by neural networks (NNs) is presented in this paper. Synthetic data generated for typical sea-ice Weibull parameters reported in the literature are used. Due to the capability of NNs for learning the statistical properties of the clutter and target signals during a supervised training, high clutter reduction rates are achieved, reverting on high detection performances. The proposed NN-based detector is compared with a reference detector proposed in the literature that approximates the Neyman-Pearson (NP) detector. The results presented in the paper allow empirically demonstrating how the NN-based detector outperforms the detector taken as reference in all the cases under study. It is achieved not only in performance but also in robustness with respect to changes in sea-ice Weibull-distributed clutter conditions. Moreover, the computational cost of the NN-based detector is very low, involving high signal processing speed.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2010.2047579</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2010-12, Vol.59 (12), p.3139-3151
issn 0018-9456
1557-9662
language eng
recordid cdi_proquest_miscellaneous_817609913
source IEEE Xplore (Online service)
subjects Approximation
Artificial intelligence
Clutter
clutter reduction
Coherence
Computational efficiency
detection
Detectors
Instrumentation
Learning
Neural networks
neural networks (NNs)
radar
Radar antennas
Radar cross section
Remote sensing
Robustness
title Coherent Detection of Swerling 0 Targets in Sea-Ice Weibull-Distributed Clutter Using Neural Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T00%3A16%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coherent%20Detection%20of%20Swerling%200%20Targets%20in%20Sea-Ice%20Weibull-Distributed%20Clutter%20Using%20Neural%20Networks&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Vicen-Bueno,%20R&rft.date=2010-12&rft.volume=59&rft.issue=12&rft.spage=3139&rft.epage=3151&rft.pages=3139-3151&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2010.2047579&rft_dat=%3Cproquest_cross%3E2724147541%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c356t-8cf42394a5514592d45f8cd4a24ee1bcab66aa68bea8b05b163352a88fa1cddf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1030153058&rft_id=info:pmid/&rft_ieee_id=5580097&rfr_iscdi=true