Loading…
Coherent Detection of Swerling 0 Targets in Sea-Ice Weibull-Distributed Clutter Using Neural Networks
The detection of Swerling 0 targets in movement in sea-ice Weibull-distributed clutter by neural networks (NNs) is presented in this paper. Synthetic data generated for typical sea-ice Weibull parameters reported in the literature are used. Due to the capability of NNs for learning the statistical p...
Saved in:
Published in: | IEEE transactions on instrumentation and measurement 2010-12, Vol.59 (12), p.3139-3151 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c356t-8cf42394a5514592d45f8cd4a24ee1bcab66aa68bea8b05b163352a88fa1cddf3 |
---|---|
cites | cdi_FETCH-LOGICAL-c356t-8cf42394a5514592d45f8cd4a24ee1bcab66aa68bea8b05b163352a88fa1cddf3 |
container_end_page | 3151 |
container_issue | 12 |
container_start_page | 3139 |
container_title | IEEE transactions on instrumentation and measurement |
container_volume | 59 |
creator | Vicen-Bueno, R Rosa-Zurera, M Jarabo-Amores, M P de la Mata-Moya, David |
description | The detection of Swerling 0 targets in movement in sea-ice Weibull-distributed clutter by neural networks (NNs) is presented in this paper. Synthetic data generated for typical sea-ice Weibull parameters reported in the literature are used. Due to the capability of NNs for learning the statistical properties of the clutter and target signals during a supervised training, high clutter reduction rates are achieved, reverting on high detection performances. The proposed NN-based detector is compared with a reference detector proposed in the literature that approximates the Neyman-Pearson (NP) detector. The results presented in the paper allow empirically demonstrating how the NN-based detector outperforms the detector taken as reference in all the cases under study. It is achieved not only in performance but also in robustness with respect to changes in sea-ice Weibull-distributed clutter conditions. Moreover, the computational cost of the NN-based detector is very low, involving high signal processing speed. |
doi_str_mv | 10.1109/TIM.2010.2047579 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_817609913</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5580097</ieee_id><sourcerecordid>2724147541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-8cf42394a5514592d45f8cd4a24ee1bcab66aa68bea8b05b163352a88fa1cddf3</originalsourceid><addsrcrecordid>eNp9kctLxDAQh4MouD7ugpeAB71UJ82jyVHW14KPw-7isaTpVKu11SRF_O_NsuLBg6ffDHy_geEj5IDBKWNgzhazu9Mc0paDKGRhNsiESVlkRql8k0wAmM6MkGqb7ITwAgCFEsWE4HR4Ro99pBcY0cV26OnQ0Pkn-q7tnyjQhfVPGANtezpHm80c0kdsq7Hrsos2RJ_GiDWddmOM6OkyrGr3OHrbpYifg38Ne2SrsV3A_Z_cJcury8X0Jrt9uJ5Nz28zx6WKmXaNyLkRVkompMlrIRvtamFzgcgqZyulrFW6QqsrkBVTnMvcat1Y5uq64bvkeH333Q8fI4ZYvrXBYdfZHocxlJoVCoxhPJEn_5JMFSzXDJRO6NEf9GUYfZ_-KBlwYJKDXFGwppwfQvDYlO--fbP-K0HlylCZDJUrQ-WPoVQ5XFdaRPzFpdQApuDfbw-L8Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1030153058</pqid></control><display><type>article</type><title>Coherent Detection of Swerling 0 Targets in Sea-Ice Weibull-Distributed Clutter Using Neural Networks</title><source>IEEE Xplore (Online service)</source><creator>Vicen-Bueno, R ; Rosa-Zurera, M ; Jarabo-Amores, M P ; de la Mata-Moya, David</creator><creatorcontrib>Vicen-Bueno, R ; Rosa-Zurera, M ; Jarabo-Amores, M P ; de la Mata-Moya, David</creatorcontrib><description>The detection of Swerling 0 targets in movement in sea-ice Weibull-distributed clutter by neural networks (NNs) is presented in this paper. Synthetic data generated for typical sea-ice Weibull parameters reported in the literature are used. Due to the capability of NNs for learning the statistical properties of the clutter and target signals during a supervised training, high clutter reduction rates are achieved, reverting on high detection performances. The proposed NN-based detector is compared with a reference detector proposed in the literature that approximates the Neyman-Pearson (NP) detector. The results presented in the paper allow empirically demonstrating how the NN-based detector outperforms the detector taken as reference in all the cases under study. It is achieved not only in performance but also in robustness with respect to changes in sea-ice Weibull-distributed clutter conditions. Moreover, the computational cost of the NN-based detector is very low, involving high signal processing speed.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2010.2047579</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Approximation ; Artificial intelligence ; Clutter ; clutter reduction ; Coherence ; Computational efficiency ; detection ; Detectors ; Instrumentation ; Learning ; Neural networks ; neural networks (NNs) ; radar ; Radar antennas ; Radar cross section ; Remote sensing ; Robustness</subject><ispartof>IEEE transactions on instrumentation and measurement, 2010-12, Vol.59 (12), p.3139-3151</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-8cf42394a5514592d45f8cd4a24ee1bcab66aa68bea8b05b163352a88fa1cddf3</citedby><cites>FETCH-LOGICAL-c356t-8cf42394a5514592d45f8cd4a24ee1bcab66aa68bea8b05b163352a88fa1cddf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5580097$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,54783</link.rule.ids></links><search><creatorcontrib>Vicen-Bueno, R</creatorcontrib><creatorcontrib>Rosa-Zurera, M</creatorcontrib><creatorcontrib>Jarabo-Amores, M P</creatorcontrib><creatorcontrib>de la Mata-Moya, David</creatorcontrib><title>Coherent Detection of Swerling 0 Targets in Sea-Ice Weibull-Distributed Clutter Using Neural Networks</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>The detection of Swerling 0 targets in movement in sea-ice Weibull-distributed clutter by neural networks (NNs) is presented in this paper. Synthetic data generated for typical sea-ice Weibull parameters reported in the literature are used. Due to the capability of NNs for learning the statistical properties of the clutter and target signals during a supervised training, high clutter reduction rates are achieved, reverting on high detection performances. The proposed NN-based detector is compared with a reference detector proposed in the literature that approximates the Neyman-Pearson (NP) detector. The results presented in the paper allow empirically demonstrating how the NN-based detector outperforms the detector taken as reference in all the cases under study. It is achieved not only in performance but also in robustness with respect to changes in sea-ice Weibull-distributed clutter conditions. Moreover, the computational cost of the NN-based detector is very low, involving high signal processing speed.</description><subject>Approximation</subject><subject>Artificial intelligence</subject><subject>Clutter</subject><subject>clutter reduction</subject><subject>Coherence</subject><subject>Computational efficiency</subject><subject>detection</subject><subject>Detectors</subject><subject>Instrumentation</subject><subject>Learning</subject><subject>Neural networks</subject><subject>neural networks (NNs)</subject><subject>radar</subject><subject>Radar antennas</subject><subject>Radar cross section</subject><subject>Remote sensing</subject><subject>Robustness</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kctLxDAQh4MouD7ugpeAB71UJ82jyVHW14KPw-7isaTpVKu11SRF_O_NsuLBg6ffDHy_geEj5IDBKWNgzhazu9Mc0paDKGRhNsiESVlkRql8k0wAmM6MkGqb7ITwAgCFEsWE4HR4Ro99pBcY0cV26OnQ0Pkn-q7tnyjQhfVPGANtezpHm80c0kdsq7Hrsos2RJ_GiDWddmOM6OkyrGr3OHrbpYifg38Ne2SrsV3A_Z_cJcury8X0Jrt9uJ5Nz28zx6WKmXaNyLkRVkompMlrIRvtamFzgcgqZyulrFW6QqsrkBVTnMvcat1Y5uq64bvkeH333Q8fI4ZYvrXBYdfZHocxlJoVCoxhPJEn_5JMFSzXDJRO6NEf9GUYfZ_-KBlwYJKDXFGwppwfQvDYlO--fbP-K0HlylCZDJUrQ-WPoVQ5XFdaRPzFpdQApuDfbw-L8Q</recordid><startdate>201012</startdate><enddate>201012</enddate><creator>Vicen-Bueno, R</creator><creator>Rosa-Zurera, M</creator><creator>Jarabo-Amores, M P</creator><creator>de la Mata-Moya, David</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>201012</creationdate><title>Coherent Detection of Swerling 0 Targets in Sea-Ice Weibull-Distributed Clutter Using Neural Networks</title><author>Vicen-Bueno, R ; Rosa-Zurera, M ; Jarabo-Amores, M P ; de la Mata-Moya, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-8cf42394a5514592d45f8cd4a24ee1bcab66aa68bea8b05b163352a88fa1cddf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Approximation</topic><topic>Artificial intelligence</topic><topic>Clutter</topic><topic>clutter reduction</topic><topic>Coherence</topic><topic>Computational efficiency</topic><topic>detection</topic><topic>Detectors</topic><topic>Instrumentation</topic><topic>Learning</topic><topic>Neural networks</topic><topic>neural networks (NNs)</topic><topic>radar</topic><topic>Radar antennas</topic><topic>Radar cross section</topic><topic>Remote sensing</topic><topic>Robustness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vicen-Bueno, R</creatorcontrib><creatorcontrib>Rosa-Zurera, M</creatorcontrib><creatorcontrib>Jarabo-Amores, M P</creatorcontrib><creatorcontrib>de la Mata-Moya, David</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vicen-Bueno, R</au><au>Rosa-Zurera, M</au><au>Jarabo-Amores, M P</au><au>de la Mata-Moya, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coherent Detection of Swerling 0 Targets in Sea-Ice Weibull-Distributed Clutter Using Neural Networks</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2010-12</date><risdate>2010</risdate><volume>59</volume><issue>12</issue><spage>3139</spage><epage>3151</epage><pages>3139-3151</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>The detection of Swerling 0 targets in movement in sea-ice Weibull-distributed clutter by neural networks (NNs) is presented in this paper. Synthetic data generated for typical sea-ice Weibull parameters reported in the literature are used. Due to the capability of NNs for learning the statistical properties of the clutter and target signals during a supervised training, high clutter reduction rates are achieved, reverting on high detection performances. The proposed NN-based detector is compared with a reference detector proposed in the literature that approximates the Neyman-Pearson (NP) detector. The results presented in the paper allow empirically demonstrating how the NN-based detector outperforms the detector taken as reference in all the cases under study. It is achieved not only in performance but also in robustness with respect to changes in sea-ice Weibull-distributed clutter conditions. Moreover, the computational cost of the NN-based detector is very low, involving high signal processing speed.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2010.2047579</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9456 |
ispartof | IEEE transactions on instrumentation and measurement, 2010-12, Vol.59 (12), p.3139-3151 |
issn | 0018-9456 1557-9662 |
language | eng |
recordid | cdi_proquest_miscellaneous_817609913 |
source | IEEE Xplore (Online service) |
subjects | Approximation Artificial intelligence Clutter clutter reduction Coherence Computational efficiency detection Detectors Instrumentation Learning Neural networks neural networks (NNs) radar Radar antennas Radar cross section Remote sensing Robustness |
title | Coherent Detection of Swerling 0 Targets in Sea-Ice Weibull-Distributed Clutter Using Neural Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T00%3A16%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coherent%20Detection%20of%20Swerling%200%20Targets%20in%20Sea-Ice%20Weibull-Distributed%20Clutter%20Using%20Neural%20Networks&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Vicen-Bueno,%20R&rft.date=2010-12&rft.volume=59&rft.issue=12&rft.spage=3139&rft.epage=3151&rft.pages=3139-3151&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2010.2047579&rft_dat=%3Cproquest_cross%3E2724147541%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c356t-8cf42394a5514592d45f8cd4a24ee1bcab66aa68bea8b05b163352a88fa1cddf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1030153058&rft_id=info:pmid/&rft_ieee_id=5580097&rfr_iscdi=true |