Loading…
Designing the quality factor of infiltrated photonic wire slot microcavities
One-dimensional photonic wire (nanobeam) microcavities are becoming preferred tools for the investigation of enhanced light-matter interaction. Here, the Q-factor of a locally infiltrated slot microcavity in a nanobeam is theoretically investigated. The electric field of the cavity mode is concentra...
Saved in:
Published in: | Optics express 2010-11, Vol.18 (24), p.25217-25224 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | One-dimensional photonic wire (nanobeam) microcavities are becoming preferred tools for the investigation of enhanced light-matter interaction. Here, the Q-factor of a locally infiltrated slot microcavity in a nanobeam is theoretically investigated. The electric field of the cavity mode is concentrated in the slot region leading to a large overlap with the infiltrated material. Tapering the spacing and diameter of the pores of the adjacent Bragg mirrors a maximum Q-factor of 35,000 is predicted. General design rules for the minimization of scattering losses and the enhancement of quality factors are reviewed and discussed. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.18.025217 |