Loading…

Real-time particle tracking at 10,000 fps using optical fiber illumination

We introduce optical fiber illumination for real-time tracking of optically trapped micrometer-sized particles with microsecond time resolution. Our light source is a high-radiance mercury arc lamp and a 600 μm optical fiber for short-distance illumination of the sample cell. Particle tracking is ca...

Full description

Saved in:
Bibliographic Details
Published in:Optics express 2010-10, Vol.18 (22), p.22722-22733
Main Authors: Otto, Oliver, Czerwinski, Fabian, Gornall, Joanne L, Stober, Gunter, Oddershede, Lene B, Seidel, Ralf, Keyser, Ulrich F
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We introduce optical fiber illumination for real-time tracking of optically trapped micrometer-sized particles with microsecond time resolution. Our light source is a high-radiance mercury arc lamp and a 600 μm optical fiber for short-distance illumination of the sample cell. Particle tracking is carried out with a software implemented cross-correlation algorithm following image acquisition from a CMOS camera. Our image data reveals that fiber illumination results in a signal-to-noise ratio usually one order of magnitude higher compared to standard Köhler illumination. We demonstrate position determination of a single optically trapped colloid with up to 10,000 frames per second over hours. We calibrate our optical tweezers and compare the results with quadrant photo diode measurements. Finally, we determine the positional accuracy of our setup to 2 nm by calculating the Allan variance. Our results show that neither illumination nor software algorithms limit the speed of real-time particle tracking with CMOS technology.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.18.022722