Loading…
Performance Enhancement by Using Graphite-In-Diamond Nanoparticles on MgO Protective Film in AC Plasma Display
Graphite-in-diamond (GiD) nanoparticles in which the secondary-electron-emission coefficient was larger than the MgO protective film were introduced to enhance the electrical and optical characteristics in alternating-current plasma displays. The GiD nanoparticles suspended stably in ethanol solvent...
Saved in:
Published in: | IEEE transactions on plasma science 2010-07, Vol.38 (7), p.1639-1643 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Graphite-in-diamond (GiD) nanoparticles in which the secondary-electron-emission coefficient was larger than the MgO protective film were introduced to enhance the electrical and optical characteristics in alternating-current plasma displays. The GiD nanoparticles suspended stably in ethanol solvent were sprayed uniformly on an MgO film. Based on the results of field-emission scanning electron microscopy and energy dispersive X-ray spectroscopy analysis after continuous operation for approximately 300 h, the morphology of the GiD nanoparticles as well as the carbon element in the particles was preserved nicely, and their characteristics could ensure long lifetime without degradation in plasma environment. It is noted that the average firing voltages of the GiD panels are 135 and 80 V lower than those of the conventional one for gas mixtures of Ne + He (50%) + Xe (15%) and Ne + He (50%) + Xe (30%), respectively. It was revealed that the optimum coverage ratio of the GiD nanoparticles sprayed on the MgO film was 6%. The luminous efficiency of the GiD panel was improved up to 40% for relatively higher xenon contents. |
---|---|
ISSN: | 0093-3813 1939-9375 |
DOI: | 10.1109/TPS.2010.2047952 |