Loading…

Analysis of Differential Flatness-Based Control for a Fuel Cell Hybrid Power Source

This paper presents an innovative control law for distributed dc generation supplied by a fuel cell (FC) (main source) and supercapacitor (auxiliary source). This kind of system is a multiconverter structure and exhibits nonlinear behavior. The operation of a multiconverter structure can lead to int...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on energy conversion 2010-09, Vol.25 (3), p.909-920
Main Authors: Thounthong, P, Pierfederici, S, Davat, B
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents an innovative control law for distributed dc generation supplied by a fuel cell (FC) (main source) and supercapacitor (auxiliary source). This kind of system is a multiconverter structure and exhibits nonlinear behavior. The operation of a multiconverter structure can lead to interactions between the controls of the converters if they are designed separately. Typically, interactions between converters are studied using impedance criteria to investigate the stability of cascaded systems. In this paper, a nonlinear control algorithm based on the flatness properties of the system is proposed. Flatness provides a convenient framework for meeting a number of performance specifications for the hybrid power source. Using the flatness property, we propose simple solutions to hybrid energy management and stabilization problems. The design controller parameters are autonomous of the operating point; moreover, interactions between converters are taken into account by the controllers, and high dynamics in disturbance rejection is achieved. To validate the proposed method, a hardware system is realized with analog circuits, and digital estimation is accomplished with a dSPACE controller. Experimental results with small-scale devices (a polymer electrolyte membrane FC of 1200 W, 46 A and a supercapacitor module of 100 F, 500 A, and 32 V) in a laboratory corroborate the excellent control scheme during a motor-drive cycle.
ISSN:0885-8969
1558-0059
DOI:10.1109/TEC.2010.2053037