Loading…

An elliptic problem with integral constraints with application to large-scale geophysical flows

We present a weak formulation of a non-standard elliptic equation whose boundary values are determined in part by integral relations. Existence and uniqueness of its solution are proved, and a finite element discretization is described, analyzed, and implemented on a test problem. The equation is a...

Full description

Saved in:
Bibliographic Details
Published in:Computational geosciences 1998-01, Vol.2 (4), p.337-346
Main Authors: Meir, Aj, Yavneh, Irad
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 346
container_issue 4
container_start_page 337
container_title Computational geosciences
container_volume 2
creator Meir, Aj
Yavneh, Irad
description We present a weak formulation of a non-standard elliptic equation whose boundary values are determined in part by integral relations. Existence and uniqueness of its solution are proved, and a finite element discretization is described, analyzed, and implemented on a test problem. The equation is a generalization of one that is solved during integration of the three-dimensional Quasigeostrophic equations, which model large-scale rotating stratified flows, where the integral constraints represent conservation of physical properties.[PUBLICATION ABSTRACT]
doi_str_mv 10.1023/A:1011514606314
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_818836099</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>818836099</sourcerecordid><originalsourceid>FETCH-LOGICAL-p212t-fa77f5f73df24de1dd821a208ac1431e9a81543c92455e2d9bee2c96dbe78a463</originalsourceid><addsrcrecordid>eNpdT0tLAzEYDKJgrZ69Bi-eVvPlsUm8leILCl70vKTZb9st6WbdpBT_vYF68jQzzDDMEHIL7AEYF4-LJ2AACmTNagHyjMxAaVGBtPa8cMlZxZTVl-QqpR1jzGoBM9IsBooh9GPuPR2nuA64p8c-b2k_ZNxMLlAfh5QnV3Q6OW4cQ-9d7uNAc6TBTRuskncB6QbjuP1JxQ20C_GYrslF50LCmz-ck6-X58_lW7X6eH1fLlbVyIHnqnNad6rTou24bBHa1nBwnBnnQQpA6wwoKbzlUinkrV0jcm_rdo3aOFmLObk_9ZYP3wdMudn3yZdnbsB4SI0BY0TNrC3Ju3_JXTxMQxnXaAXCcMuV-AUHAmUV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>751382925</pqid></control><display><type>article</type><title>An elliptic problem with integral constraints with application to large-scale geophysical flows</title><source>Springer Link</source><creator>Meir, Aj ; Yavneh, Irad</creator><creatorcontrib>Meir, Aj ; Yavneh, Irad</creatorcontrib><description>We present a weak formulation of a non-standard elliptic equation whose boundary values are determined in part by integral relations. Existence and uniqueness of its solution are proved, and a finite element discretization is described, analyzed, and implemented on a test problem. The equation is a generalization of one that is solved during integration of the three-dimensional Quasigeostrophic equations, which model large-scale rotating stratified flows, where the integral constraints represent conservation of physical properties.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 1420-0597</identifier><identifier>EISSN: 1573-1499</identifier><identifier>DOI: 10.1023/A:1011514606314</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Boundary value problems ; Discretization ; Finite element analysis ; Integrals ; Mathematical analysis ; Mathematical models ; Physical properties ; Stratified flow ; Studies ; Uniqueness</subject><ispartof>Computational geosciences, 1998-01, Vol.2 (4), p.337-346</ispartof><rights>Kluwer Academic Publishers 1998</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Meir, Aj</creatorcontrib><creatorcontrib>Yavneh, Irad</creatorcontrib><title>An elliptic problem with integral constraints with application to large-scale geophysical flows</title><title>Computational geosciences</title><description>We present a weak formulation of a non-standard elliptic equation whose boundary values are determined in part by integral relations. Existence and uniqueness of its solution are proved, and a finite element discretization is described, analyzed, and implemented on a test problem. The equation is a generalization of one that is solved during integration of the three-dimensional Quasigeostrophic equations, which model large-scale rotating stratified flows, where the integral constraints represent conservation of physical properties.[PUBLICATION ABSTRACT]</description><subject>Boundary value problems</subject><subject>Discretization</subject><subject>Finite element analysis</subject><subject>Integrals</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Physical properties</subject><subject>Stratified flow</subject><subject>Studies</subject><subject>Uniqueness</subject><issn>1420-0597</issn><issn>1573-1499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNpdT0tLAzEYDKJgrZ69Bi-eVvPlsUm8leILCl70vKTZb9st6WbdpBT_vYF68jQzzDDMEHIL7AEYF4-LJ2AACmTNagHyjMxAaVGBtPa8cMlZxZTVl-QqpR1jzGoBM9IsBooh9GPuPR2nuA64p8c-b2k_ZNxMLlAfh5QnV3Q6OW4cQ-9d7uNAc6TBTRuskncB6QbjuP1JxQ20C_GYrslF50LCmz-ck6-X58_lW7X6eH1fLlbVyIHnqnNad6rTou24bBHa1nBwnBnnQQpA6wwoKbzlUinkrV0jcm_rdo3aOFmLObk_9ZYP3wdMudn3yZdnbsB4SI0BY0TNrC3Ju3_JXTxMQxnXaAXCcMuV-AUHAmUV</recordid><startdate>19980101</startdate><enddate>19980101</enddate><creator>Meir, Aj</creator><creator>Yavneh, Irad</creator><general>Springer Nature B.V</general><scope>3V.</scope><scope>7SC</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>19980101</creationdate><title>An elliptic problem with integral constraints with application to large-scale geophysical flows</title><author>Meir, Aj ; Yavneh, Irad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p212t-fa77f5f73df24de1dd821a208ac1431e9a81543c92455e2d9bee2c96dbe78a463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Boundary value problems</topic><topic>Discretization</topic><topic>Finite element analysis</topic><topic>Integrals</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Physical properties</topic><topic>Stratified flow</topic><topic>Studies</topic><topic>Uniqueness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meir, Aj</creatorcontrib><creatorcontrib>Yavneh, Irad</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Computational geosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meir, Aj</au><au>Yavneh, Irad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An elliptic problem with integral constraints with application to large-scale geophysical flows</atitle><jtitle>Computational geosciences</jtitle><date>1998-01-01</date><risdate>1998</risdate><volume>2</volume><issue>4</issue><spage>337</spage><epage>346</epage><pages>337-346</pages><issn>1420-0597</issn><eissn>1573-1499</eissn><abstract>We present a weak formulation of a non-standard elliptic equation whose boundary values are determined in part by integral relations. Existence and uniqueness of its solution are proved, and a finite element discretization is described, analyzed, and implemented on a test problem. The equation is a generalization of one that is solved during integration of the three-dimensional Quasigeostrophic equations, which model large-scale rotating stratified flows, where the integral constraints represent conservation of physical properties.[PUBLICATION ABSTRACT]</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1023/A:1011514606314</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1420-0597
ispartof Computational geosciences, 1998-01, Vol.2 (4), p.337-346
issn 1420-0597
1573-1499
language eng
recordid cdi_proquest_miscellaneous_818836099
source Springer Link
subjects Boundary value problems
Discretization
Finite element analysis
Integrals
Mathematical analysis
Mathematical models
Physical properties
Stratified flow
Studies
Uniqueness
title An elliptic problem with integral constraints with application to large-scale geophysical flows
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A02%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20elliptic%20problem%20with%20integral%20constraints%20with%20application%20to%20large-scale%20geophysical%20flows&rft.jtitle=Computational%20geosciences&rft.au=Meir,%20Aj&rft.date=1998-01-01&rft.volume=2&rft.issue=4&rft.spage=337&rft.epage=346&rft.pages=337-346&rft.issn=1420-0597&rft.eissn=1573-1499&rft_id=info:doi/10.1023/A:1011514606314&rft_dat=%3Cproquest%3E818836099%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p212t-fa77f5f73df24de1dd821a208ac1431e9a81543c92455e2d9bee2c96dbe78a463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=751382925&rft_id=info:pmid/&rfr_iscdi=true