Loading…
An elliptic problem with integral constraints with application to large-scale geophysical flows
We present a weak formulation of a non-standard elliptic equation whose boundary values are determined in part by integral relations. Existence and uniqueness of its solution are proved, and a finite element discretization is described, analyzed, and implemented on a test problem. The equation is a...
Saved in:
Published in: | Computational geosciences 1998-01, Vol.2 (4), p.337-346 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 346 |
container_issue | 4 |
container_start_page | 337 |
container_title | Computational geosciences |
container_volume | 2 |
creator | Meir, Aj Yavneh, Irad |
description | We present a weak formulation of a non-standard elliptic equation whose boundary values are determined in part by integral relations. Existence and uniqueness of its solution are proved, and a finite element discretization is described, analyzed, and implemented on a test problem. The equation is a generalization of one that is solved during integration of the three-dimensional Quasigeostrophic equations, which model large-scale rotating stratified flows, where the integral constraints represent conservation of physical properties.[PUBLICATION ABSTRACT] |
doi_str_mv | 10.1023/A:1011514606314 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_818836099</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>818836099</sourcerecordid><originalsourceid>FETCH-LOGICAL-p212t-fa77f5f73df24de1dd821a208ac1431e9a81543c92455e2d9bee2c96dbe78a463</originalsourceid><addsrcrecordid>eNpdT0tLAzEYDKJgrZ69Bi-eVvPlsUm8leILCl70vKTZb9st6WbdpBT_vYF68jQzzDDMEHIL7AEYF4-LJ2AACmTNagHyjMxAaVGBtPa8cMlZxZTVl-QqpR1jzGoBM9IsBooh9GPuPR2nuA64p8c-b2k_ZNxMLlAfh5QnV3Q6OW4cQ-9d7uNAc6TBTRuskncB6QbjuP1JxQ20C_GYrslF50LCmz-ck6-X58_lW7X6eH1fLlbVyIHnqnNad6rTou24bBHa1nBwnBnnQQpA6wwoKbzlUinkrV0jcm_rdo3aOFmLObk_9ZYP3wdMudn3yZdnbsB4SI0BY0TNrC3Ju3_JXTxMQxnXaAXCcMuV-AUHAmUV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>751382925</pqid></control><display><type>article</type><title>An elliptic problem with integral constraints with application to large-scale geophysical flows</title><source>Springer Link</source><creator>Meir, Aj ; Yavneh, Irad</creator><creatorcontrib>Meir, Aj ; Yavneh, Irad</creatorcontrib><description>We present a weak formulation of a non-standard elliptic equation whose boundary values are determined in part by integral relations. Existence and uniqueness of its solution are proved, and a finite element discretization is described, analyzed, and implemented on a test problem. The equation is a generalization of one that is solved during integration of the three-dimensional Quasigeostrophic equations, which model large-scale rotating stratified flows, where the integral constraints represent conservation of physical properties.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 1420-0597</identifier><identifier>EISSN: 1573-1499</identifier><identifier>DOI: 10.1023/A:1011514606314</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Boundary value problems ; Discretization ; Finite element analysis ; Integrals ; Mathematical analysis ; Mathematical models ; Physical properties ; Stratified flow ; Studies ; Uniqueness</subject><ispartof>Computational geosciences, 1998-01, Vol.2 (4), p.337-346</ispartof><rights>Kluwer Academic Publishers 1998</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Meir, Aj</creatorcontrib><creatorcontrib>Yavneh, Irad</creatorcontrib><title>An elliptic problem with integral constraints with application to large-scale geophysical flows</title><title>Computational geosciences</title><description>We present a weak formulation of a non-standard elliptic equation whose boundary values are determined in part by integral relations. Existence and uniqueness of its solution are proved, and a finite element discretization is described, analyzed, and implemented on a test problem. The equation is a generalization of one that is solved during integration of the three-dimensional Quasigeostrophic equations, which model large-scale rotating stratified flows, where the integral constraints represent conservation of physical properties.[PUBLICATION ABSTRACT]</description><subject>Boundary value problems</subject><subject>Discretization</subject><subject>Finite element analysis</subject><subject>Integrals</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Physical properties</subject><subject>Stratified flow</subject><subject>Studies</subject><subject>Uniqueness</subject><issn>1420-0597</issn><issn>1573-1499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNpdT0tLAzEYDKJgrZ69Bi-eVvPlsUm8leILCl70vKTZb9st6WbdpBT_vYF68jQzzDDMEHIL7AEYF4-LJ2AACmTNagHyjMxAaVGBtPa8cMlZxZTVl-QqpR1jzGoBM9IsBooh9GPuPR2nuA64p8c-b2k_ZNxMLlAfh5QnV3Q6OW4cQ-9d7uNAc6TBTRuskncB6QbjuP1JxQ20C_GYrslF50LCmz-ck6-X58_lW7X6eH1fLlbVyIHnqnNad6rTou24bBHa1nBwnBnnQQpA6wwoKbzlUinkrV0jcm_rdo3aOFmLObk_9ZYP3wdMudn3yZdnbsB4SI0BY0TNrC3Ju3_JXTxMQxnXaAXCcMuV-AUHAmUV</recordid><startdate>19980101</startdate><enddate>19980101</enddate><creator>Meir, Aj</creator><creator>Yavneh, Irad</creator><general>Springer Nature B.V</general><scope>3V.</scope><scope>7SC</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>19980101</creationdate><title>An elliptic problem with integral constraints with application to large-scale geophysical flows</title><author>Meir, Aj ; Yavneh, Irad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p212t-fa77f5f73df24de1dd821a208ac1431e9a81543c92455e2d9bee2c96dbe78a463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Boundary value problems</topic><topic>Discretization</topic><topic>Finite element analysis</topic><topic>Integrals</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Physical properties</topic><topic>Stratified flow</topic><topic>Studies</topic><topic>Uniqueness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meir, Aj</creatorcontrib><creatorcontrib>Yavneh, Irad</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest Science Journals</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Computational geosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meir, Aj</au><au>Yavneh, Irad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An elliptic problem with integral constraints with application to large-scale geophysical flows</atitle><jtitle>Computational geosciences</jtitle><date>1998-01-01</date><risdate>1998</risdate><volume>2</volume><issue>4</issue><spage>337</spage><epage>346</epage><pages>337-346</pages><issn>1420-0597</issn><eissn>1573-1499</eissn><abstract>We present a weak formulation of a non-standard elliptic equation whose boundary values are determined in part by integral relations. Existence and uniqueness of its solution are proved, and a finite element discretization is described, analyzed, and implemented on a test problem. The equation is a generalization of one that is solved during integration of the three-dimensional Quasigeostrophic equations, which model large-scale rotating stratified flows, where the integral constraints represent conservation of physical properties.[PUBLICATION ABSTRACT]</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1023/A:1011514606314</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1420-0597 |
ispartof | Computational geosciences, 1998-01, Vol.2 (4), p.337-346 |
issn | 1420-0597 1573-1499 |
language | eng |
recordid | cdi_proquest_miscellaneous_818836099 |
source | Springer Link |
subjects | Boundary value problems Discretization Finite element analysis Integrals Mathematical analysis Mathematical models Physical properties Stratified flow Studies Uniqueness |
title | An elliptic problem with integral constraints with application to large-scale geophysical flows |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A02%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20elliptic%20problem%20with%20integral%20constraints%20with%20application%20to%20large-scale%20geophysical%20flows&rft.jtitle=Computational%20geosciences&rft.au=Meir,%20Aj&rft.date=1998-01-01&rft.volume=2&rft.issue=4&rft.spage=337&rft.epage=346&rft.pages=337-346&rft.issn=1420-0597&rft.eissn=1573-1499&rft_id=info:doi/10.1023/A:1011514606314&rft_dat=%3Cproquest%3E818836099%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p212t-fa77f5f73df24de1dd821a208ac1431e9a81543c92455e2d9bee2c96dbe78a463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=751382925&rft_id=info:pmid/&rfr_iscdi=true |