Loading…

An adaptive location estimator using tracking algorithms for indoor WLANs

This paper presents adaptive algorithms for estimating the location of a mobile terminal (MT) based on radio propagation modeling (RPM), Kalman filtering (KF), and radio-frequency identification (RFID) assisting for indoor wireless local area networks (WLANs). The location of the MT of the extended...

Full description

Saved in:
Bibliographic Details
Published in:Wireless networks 2010-10, Vol.16 (7), p.1987-2012
Main Authors: Chiou, Yih-Shyh, Wang, Chin-Liang, Yeh, Sheng-Cheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c347t-9e963d2971b5c8aad087b42e737c4c4832829c7215215c2bcaba5e2f687b245f3
cites cdi_FETCH-LOGICAL-c347t-9e963d2971b5c8aad087b42e737c4c4832829c7215215c2bcaba5e2f687b245f3
container_end_page 2012
container_issue 7
container_start_page 1987
container_title Wireless networks
container_volume 16
creator Chiou, Yih-Shyh
Wang, Chin-Liang
Yeh, Sheng-Cheng
description This paper presents adaptive algorithms for estimating the location of a mobile terminal (MT) based on radio propagation modeling (RPM), Kalman filtering (KF), and radio-frequency identification (RFID) assisting for indoor wireless local area networks (WLANs). The location of the MT of the extended KF positioning algorithm is extracted from the constant-speed trajectory and the radio propagation model. The observation information of the KF tracker is extracted from the empirical and RPM positioning methods. Specifically, a sensor-assisted method employs an RFID system to adapt the sequential selection cluster algorithm. As compared with the empirical method, not only can the RPM algorithm reduce the number of training data points and perform on-line calibration in the signal space, but the RPM and KF algorithms can alleviate the problem of aliasing. In addition, the KF tracker with the RFID-assisted scheme can calibrate the location estimation and improve the corner effect. Experimental results demonstrate that the proposed location-tracking algorithm using KF with the RFID-assisted scheme can achieve a high degree of location accuracy (i.e., more than 90% of the estimated positions have error distances of less than 2.1 m).
doi_str_mv 10.1007/s11276-010-0240-8
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_818836244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2145777531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-9e963d2971b5c8aad087b42e737c4c4832829c7215215c2bcaba5e2f687b245f3</originalsourceid><addsrcrecordid>eNp1kFtLxDAQhYMouF5-gG_FF5-ik0ub5HFZvCws-qL4GNI0Xbt2mzVJBf-9WSoIgjAwA_Od4cxB6ILANQEQN5EQKioMBDBQDlgeoBkpBcWSqOowz0ApBmDyGJ3EuAEAyZSaoeV8KExjdqn7dEXvrUmdHwoXU7c1yYdijN2wLlIw9n0_mH7tQ5fetrFo87YbGp_b62r-GM_QUWv66M5_-il6ubt9Xjzg1dP9cjFfYcu4SFg5VbGGKkHq0kpjGpCi5tQJJiy3XDIqqbKCkjKXpbU1tSkdbauMUV627BRdTXd3wX-M2anedtG6vjeD82PUkkjJKsp5Ji__kBs_hiGb06JkUpVSQYbIBNngYwyu1buQfw9fmoDeR6unaHWOVu-j1TJr6KSJmR3WLvwe_l_0DUsgerg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753895890</pqid></control><display><type>article</type><title>An adaptive location estimator using tracking algorithms for indoor WLANs</title><source>ABI/INFORM Global</source><source>Springer Link</source><creator>Chiou, Yih-Shyh ; Wang, Chin-Liang ; Yeh, Sheng-Cheng</creator><creatorcontrib>Chiou, Yih-Shyh ; Wang, Chin-Liang ; Yeh, Sheng-Cheng</creatorcontrib><description>This paper presents adaptive algorithms for estimating the location of a mobile terminal (MT) based on radio propagation modeling (RPM), Kalman filtering (KF), and radio-frequency identification (RFID) assisting for indoor wireless local area networks (WLANs). The location of the MT of the extended KF positioning algorithm is extracted from the constant-speed trajectory and the radio propagation model. The observation information of the KF tracker is extracted from the empirical and RPM positioning methods. Specifically, a sensor-assisted method employs an RFID system to adapt the sequential selection cluster algorithm. As compared with the empirical method, not only can the RPM algorithm reduce the number of training data points and perform on-line calibration in the signal space, but the RPM and KF algorithms can alleviate the problem of aliasing. In addition, the KF tracker with the RFID-assisted scheme can calibrate the location estimation and improve the corner effect. Experimental results demonstrate that the proposed location-tracking algorithm using KF with the RFID-assisted scheme can achieve a high degree of location accuracy (i.e., more than 90% of the estimated positions have error distances of less than 2.1 m).</description><identifier>ISSN: 1022-0038</identifier><identifier>EISSN: 1572-8196</identifier><identifier>DOI: 10.1007/s11276-010-0240-8</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Accuracy ; Adaptive algorithms ; Algorithms ; Communications Engineering ; Computer Communication Networks ; Electrical Engineering ; Engineering ; Global positioning systems ; GPS ; Indoor ; Infrastructure ; International ; IT in Business ; Local area networks ; Mathematical models ; Methods ; Network management systems ; Networks ; Noise ; Position (location) ; Probability distribution ; Propagation ; Radio communications ; Radio frequency ; Radio frequency identification ; Sensors ; Studies ; Wireless communication ; Wireless networks</subject><ispartof>Wireless networks, 2010-10, Vol.16 (7), p.1987-2012</ispartof><rights>Springer Science+Business Media, LLC 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-9e963d2971b5c8aad087b42e737c4c4832829c7215215c2bcaba5e2f687b245f3</citedby><cites>FETCH-LOGICAL-c347t-9e963d2971b5c8aad087b42e737c4c4832829c7215215c2bcaba5e2f687b245f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/753895890/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/753895890?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,36061,44363,74895</link.rule.ids></links><search><creatorcontrib>Chiou, Yih-Shyh</creatorcontrib><creatorcontrib>Wang, Chin-Liang</creatorcontrib><creatorcontrib>Yeh, Sheng-Cheng</creatorcontrib><title>An adaptive location estimator using tracking algorithms for indoor WLANs</title><title>Wireless networks</title><addtitle>Wireless Netw</addtitle><description>This paper presents adaptive algorithms for estimating the location of a mobile terminal (MT) based on radio propagation modeling (RPM), Kalman filtering (KF), and radio-frequency identification (RFID) assisting for indoor wireless local area networks (WLANs). The location of the MT of the extended KF positioning algorithm is extracted from the constant-speed trajectory and the radio propagation model. The observation information of the KF tracker is extracted from the empirical and RPM positioning methods. Specifically, a sensor-assisted method employs an RFID system to adapt the sequential selection cluster algorithm. As compared with the empirical method, not only can the RPM algorithm reduce the number of training data points and perform on-line calibration in the signal space, but the RPM and KF algorithms can alleviate the problem of aliasing. In addition, the KF tracker with the RFID-assisted scheme can calibrate the location estimation and improve the corner effect. Experimental results demonstrate that the proposed location-tracking algorithm using KF with the RFID-assisted scheme can achieve a high degree of location accuracy (i.e., more than 90% of the estimated positions have error distances of less than 2.1 m).</description><subject>Accuracy</subject><subject>Adaptive algorithms</subject><subject>Algorithms</subject><subject>Communications Engineering</subject><subject>Computer Communication Networks</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Indoor</subject><subject>Infrastructure</subject><subject>International</subject><subject>IT in Business</subject><subject>Local area networks</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Network management systems</subject><subject>Networks</subject><subject>Noise</subject><subject>Position (location)</subject><subject>Probability distribution</subject><subject>Propagation</subject><subject>Radio communications</subject><subject>Radio frequency</subject><subject>Radio frequency identification</subject><subject>Sensors</subject><subject>Studies</subject><subject>Wireless communication</subject><subject>Wireless networks</subject><issn>1022-0038</issn><issn>1572-8196</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kFtLxDAQhYMouF5-gG_FF5-ik0ub5HFZvCws-qL4GNI0Xbt2mzVJBf-9WSoIgjAwA_Od4cxB6ILANQEQN5EQKioMBDBQDlgeoBkpBcWSqOowz0ApBmDyGJ3EuAEAyZSaoeV8KExjdqn7dEXvrUmdHwoXU7c1yYdijN2wLlIw9n0_mH7tQ5fetrFo87YbGp_b62r-GM_QUWv66M5_-il6ubt9Xjzg1dP9cjFfYcu4SFg5VbGGKkHq0kpjGpCi5tQJJiy3XDIqqbKCkjKXpbU1tSkdbauMUV627BRdTXd3wX-M2anedtG6vjeD82PUkkjJKsp5Ji__kBs_hiGb06JkUpVSQYbIBNngYwyu1buQfw9fmoDeR6unaHWOVu-j1TJr6KSJmR3WLvwe_l_0DUsgerg</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Chiou, Yih-Shyh</creator><creator>Wang, Chin-Liang</creator><creator>Yeh, Sheng-Cheng</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20101001</creationdate><title>An adaptive location estimator using tracking algorithms for indoor WLANs</title><author>Chiou, Yih-Shyh ; Wang, Chin-Liang ; Yeh, Sheng-Cheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-9e963d2971b5c8aad087b42e737c4c4832829c7215215c2bcaba5e2f687b245f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Accuracy</topic><topic>Adaptive algorithms</topic><topic>Algorithms</topic><topic>Communications Engineering</topic><topic>Computer Communication Networks</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Indoor</topic><topic>Infrastructure</topic><topic>International</topic><topic>IT in Business</topic><topic>Local area networks</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Network management systems</topic><topic>Networks</topic><topic>Noise</topic><topic>Position (location)</topic><topic>Probability distribution</topic><topic>Propagation</topic><topic>Radio communications</topic><topic>Radio frequency</topic><topic>Radio frequency identification</topic><topic>Sensors</topic><topic>Studies</topic><topic>Wireless communication</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chiou, Yih-Shyh</creatorcontrib><creatorcontrib>Wang, Chin-Liang</creatorcontrib><creatorcontrib>Yeh, Sheng-Cheng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ABI/INFORM Complete</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Wireless networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chiou, Yih-Shyh</au><au>Wang, Chin-Liang</au><au>Yeh, Sheng-Cheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An adaptive location estimator using tracking algorithms for indoor WLANs</atitle><jtitle>Wireless networks</jtitle><stitle>Wireless Netw</stitle><date>2010-10-01</date><risdate>2010</risdate><volume>16</volume><issue>7</issue><spage>1987</spage><epage>2012</epage><pages>1987-2012</pages><issn>1022-0038</issn><eissn>1572-8196</eissn><abstract>This paper presents adaptive algorithms for estimating the location of a mobile terminal (MT) based on radio propagation modeling (RPM), Kalman filtering (KF), and radio-frequency identification (RFID) assisting for indoor wireless local area networks (WLANs). The location of the MT of the extended KF positioning algorithm is extracted from the constant-speed trajectory and the radio propagation model. The observation information of the KF tracker is extracted from the empirical and RPM positioning methods. Specifically, a sensor-assisted method employs an RFID system to adapt the sequential selection cluster algorithm. As compared with the empirical method, not only can the RPM algorithm reduce the number of training data points and perform on-line calibration in the signal space, but the RPM and KF algorithms can alleviate the problem of aliasing. In addition, the KF tracker with the RFID-assisted scheme can calibrate the location estimation and improve the corner effect. Experimental results demonstrate that the proposed location-tracking algorithm using KF with the RFID-assisted scheme can achieve a high degree of location accuracy (i.e., more than 90% of the estimated positions have error distances of less than 2.1 m).</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11276-010-0240-8</doi><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1022-0038
ispartof Wireless networks, 2010-10, Vol.16 (7), p.1987-2012
issn 1022-0038
1572-8196
language eng
recordid cdi_proquest_miscellaneous_818836244
source ABI/INFORM Global; Springer Link
subjects Accuracy
Adaptive algorithms
Algorithms
Communications Engineering
Computer Communication Networks
Electrical Engineering
Engineering
Global positioning systems
GPS
Indoor
Infrastructure
International
IT in Business
Local area networks
Mathematical models
Methods
Network management systems
Networks
Noise
Position (location)
Probability distribution
Propagation
Radio communications
Radio frequency
Radio frequency identification
Sensors
Studies
Wireless communication
Wireless networks
title An adaptive location estimator using tracking algorithms for indoor WLANs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T13%3A13%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20adaptive%20location%20estimator%20using%20tracking%20algorithms%20for%20indoor%20WLANs&rft.jtitle=Wireless%20networks&rft.au=Chiou,%20Yih-Shyh&rft.date=2010-10-01&rft.volume=16&rft.issue=7&rft.spage=1987&rft.epage=2012&rft.pages=1987-2012&rft.issn=1022-0038&rft.eissn=1572-8196&rft_id=info:doi/10.1007/s11276-010-0240-8&rft_dat=%3Cproquest_cross%3E2145777531%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c347t-9e963d2971b5c8aad087b42e737c4c4832829c7215215c2bcaba5e2f687b245f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=753895890&rft_id=info:pmid/&rfr_iscdi=true