Loading…
An adaptive location estimator using tracking algorithms for indoor WLANs
This paper presents adaptive algorithms for estimating the location of a mobile terminal (MT) based on radio propagation modeling (RPM), Kalman filtering (KF), and radio-frequency identification (RFID) assisting for indoor wireless local area networks (WLANs). The location of the MT of the extended...
Saved in:
Published in: | Wireless networks 2010-10, Vol.16 (7), p.1987-2012 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c347t-9e963d2971b5c8aad087b42e737c4c4832829c7215215c2bcaba5e2f687b245f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c347t-9e963d2971b5c8aad087b42e737c4c4832829c7215215c2bcaba5e2f687b245f3 |
container_end_page | 2012 |
container_issue | 7 |
container_start_page | 1987 |
container_title | Wireless networks |
container_volume | 16 |
creator | Chiou, Yih-Shyh Wang, Chin-Liang Yeh, Sheng-Cheng |
description | This paper presents adaptive algorithms for estimating the location of a mobile terminal (MT) based on radio propagation modeling (RPM), Kalman filtering (KF), and radio-frequency identification (RFID) assisting for indoor wireless local area networks (WLANs). The location of the MT of the extended KF positioning algorithm is extracted from the constant-speed trajectory and the radio propagation model. The observation information of the KF tracker is extracted from the empirical and RPM positioning methods. Specifically, a sensor-assisted method employs an RFID system to adapt the sequential selection cluster algorithm. As compared with the empirical method, not only can the RPM algorithm reduce the number of training data points and perform on-line calibration in the signal space, but the RPM and KF algorithms can alleviate the problem of aliasing. In addition, the KF tracker with the RFID-assisted scheme can calibrate the location estimation and improve the corner effect. Experimental results demonstrate that the proposed location-tracking algorithm using KF with the RFID-assisted scheme can achieve a high degree of location accuracy (i.e., more than 90% of the estimated positions have error distances of less than 2.1 m). |
doi_str_mv | 10.1007/s11276-010-0240-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_818836244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2145777531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-9e963d2971b5c8aad087b42e737c4c4832829c7215215c2bcaba5e2f687b245f3</originalsourceid><addsrcrecordid>eNp1kFtLxDAQhYMouF5-gG_FF5-ik0ub5HFZvCws-qL4GNI0Xbt2mzVJBf-9WSoIgjAwA_Od4cxB6ILANQEQN5EQKioMBDBQDlgeoBkpBcWSqOowz0ApBmDyGJ3EuAEAyZSaoeV8KExjdqn7dEXvrUmdHwoXU7c1yYdijN2wLlIw9n0_mH7tQ5fetrFo87YbGp_b62r-GM_QUWv66M5_-il6ubt9Xjzg1dP9cjFfYcu4SFg5VbGGKkHq0kpjGpCi5tQJJiy3XDIqqbKCkjKXpbU1tSkdbauMUV627BRdTXd3wX-M2anedtG6vjeD82PUkkjJKsp5Ji__kBs_hiGb06JkUpVSQYbIBNngYwyu1buQfw9fmoDeR6unaHWOVu-j1TJr6KSJmR3WLvwe_l_0DUsgerg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753895890</pqid></control><display><type>article</type><title>An adaptive location estimator using tracking algorithms for indoor WLANs</title><source>ABI/INFORM Global</source><source>Springer Link</source><creator>Chiou, Yih-Shyh ; Wang, Chin-Liang ; Yeh, Sheng-Cheng</creator><creatorcontrib>Chiou, Yih-Shyh ; Wang, Chin-Liang ; Yeh, Sheng-Cheng</creatorcontrib><description>This paper presents adaptive algorithms for estimating the location of a mobile terminal (MT) based on radio propagation modeling (RPM), Kalman filtering (KF), and radio-frequency identification (RFID) assisting for indoor wireless local area networks (WLANs). The location of the MT of the extended KF positioning algorithm is extracted from the constant-speed trajectory and the radio propagation model. The observation information of the KF tracker is extracted from the empirical and RPM positioning methods. Specifically, a sensor-assisted method employs an RFID system to adapt the sequential selection cluster algorithm. As compared with the empirical method, not only can the RPM algorithm reduce the number of training data points and perform on-line calibration in the signal space, but the RPM and KF algorithms can alleviate the problem of aliasing. In addition, the KF tracker with the RFID-assisted scheme can calibrate the location estimation and improve the corner effect. Experimental results demonstrate that the proposed location-tracking algorithm using KF with the RFID-assisted scheme can achieve a high degree of location accuracy (i.e., more than 90% of the estimated positions have error distances of less than 2.1 m).</description><identifier>ISSN: 1022-0038</identifier><identifier>EISSN: 1572-8196</identifier><identifier>DOI: 10.1007/s11276-010-0240-8</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Accuracy ; Adaptive algorithms ; Algorithms ; Communications Engineering ; Computer Communication Networks ; Electrical Engineering ; Engineering ; Global positioning systems ; GPS ; Indoor ; Infrastructure ; International ; IT in Business ; Local area networks ; Mathematical models ; Methods ; Network management systems ; Networks ; Noise ; Position (location) ; Probability distribution ; Propagation ; Radio communications ; Radio frequency ; Radio frequency identification ; Sensors ; Studies ; Wireless communication ; Wireless networks</subject><ispartof>Wireless networks, 2010-10, Vol.16 (7), p.1987-2012</ispartof><rights>Springer Science+Business Media, LLC 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-9e963d2971b5c8aad087b42e737c4c4832829c7215215c2bcaba5e2f687b245f3</citedby><cites>FETCH-LOGICAL-c347t-9e963d2971b5c8aad087b42e737c4c4832829c7215215c2bcaba5e2f687b245f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/753895890/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/753895890?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,36061,44363,74895</link.rule.ids></links><search><creatorcontrib>Chiou, Yih-Shyh</creatorcontrib><creatorcontrib>Wang, Chin-Liang</creatorcontrib><creatorcontrib>Yeh, Sheng-Cheng</creatorcontrib><title>An adaptive location estimator using tracking algorithms for indoor WLANs</title><title>Wireless networks</title><addtitle>Wireless Netw</addtitle><description>This paper presents adaptive algorithms for estimating the location of a mobile terminal (MT) based on radio propagation modeling (RPM), Kalman filtering (KF), and radio-frequency identification (RFID) assisting for indoor wireless local area networks (WLANs). The location of the MT of the extended KF positioning algorithm is extracted from the constant-speed trajectory and the radio propagation model. The observation information of the KF tracker is extracted from the empirical and RPM positioning methods. Specifically, a sensor-assisted method employs an RFID system to adapt the sequential selection cluster algorithm. As compared with the empirical method, not only can the RPM algorithm reduce the number of training data points and perform on-line calibration in the signal space, but the RPM and KF algorithms can alleviate the problem of aliasing. In addition, the KF tracker with the RFID-assisted scheme can calibrate the location estimation and improve the corner effect. Experimental results demonstrate that the proposed location-tracking algorithm using KF with the RFID-assisted scheme can achieve a high degree of location accuracy (i.e., more than 90% of the estimated positions have error distances of less than 2.1 m).</description><subject>Accuracy</subject><subject>Adaptive algorithms</subject><subject>Algorithms</subject><subject>Communications Engineering</subject><subject>Computer Communication Networks</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Indoor</subject><subject>Infrastructure</subject><subject>International</subject><subject>IT in Business</subject><subject>Local area networks</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Network management systems</subject><subject>Networks</subject><subject>Noise</subject><subject>Position (location)</subject><subject>Probability distribution</subject><subject>Propagation</subject><subject>Radio communications</subject><subject>Radio frequency</subject><subject>Radio frequency identification</subject><subject>Sensors</subject><subject>Studies</subject><subject>Wireless communication</subject><subject>Wireless networks</subject><issn>1022-0038</issn><issn>1572-8196</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kFtLxDAQhYMouF5-gG_FF5-ik0ub5HFZvCws-qL4GNI0Xbt2mzVJBf-9WSoIgjAwA_Od4cxB6ILANQEQN5EQKioMBDBQDlgeoBkpBcWSqOowz0ApBmDyGJ3EuAEAyZSaoeV8KExjdqn7dEXvrUmdHwoXU7c1yYdijN2wLlIw9n0_mH7tQ5fetrFo87YbGp_b62r-GM_QUWv66M5_-il6ubt9Xjzg1dP9cjFfYcu4SFg5VbGGKkHq0kpjGpCi5tQJJiy3XDIqqbKCkjKXpbU1tSkdbauMUV627BRdTXd3wX-M2anedtG6vjeD82PUkkjJKsp5Ji__kBs_hiGb06JkUpVSQYbIBNngYwyu1buQfw9fmoDeR6unaHWOVu-j1TJr6KSJmR3WLvwe_l_0DUsgerg</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Chiou, Yih-Shyh</creator><creator>Wang, Chin-Liang</creator><creator>Yeh, Sheng-Cheng</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20101001</creationdate><title>An adaptive location estimator using tracking algorithms for indoor WLANs</title><author>Chiou, Yih-Shyh ; Wang, Chin-Liang ; Yeh, Sheng-Cheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-9e963d2971b5c8aad087b42e737c4c4832829c7215215c2bcaba5e2f687b245f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Accuracy</topic><topic>Adaptive algorithms</topic><topic>Algorithms</topic><topic>Communications Engineering</topic><topic>Computer Communication Networks</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Indoor</topic><topic>Infrastructure</topic><topic>International</topic><topic>IT in Business</topic><topic>Local area networks</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Network management systems</topic><topic>Networks</topic><topic>Noise</topic><topic>Position (location)</topic><topic>Probability distribution</topic><topic>Propagation</topic><topic>Radio communications</topic><topic>Radio frequency</topic><topic>Radio frequency identification</topic><topic>Sensors</topic><topic>Studies</topic><topic>Wireless communication</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chiou, Yih-Shyh</creatorcontrib><creatorcontrib>Wang, Chin-Liang</creatorcontrib><creatorcontrib>Yeh, Sheng-Cheng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>ABI/INFORM Complete</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Wireless networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chiou, Yih-Shyh</au><au>Wang, Chin-Liang</au><au>Yeh, Sheng-Cheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An adaptive location estimator using tracking algorithms for indoor WLANs</atitle><jtitle>Wireless networks</jtitle><stitle>Wireless Netw</stitle><date>2010-10-01</date><risdate>2010</risdate><volume>16</volume><issue>7</issue><spage>1987</spage><epage>2012</epage><pages>1987-2012</pages><issn>1022-0038</issn><eissn>1572-8196</eissn><abstract>This paper presents adaptive algorithms for estimating the location of a mobile terminal (MT) based on radio propagation modeling (RPM), Kalman filtering (KF), and radio-frequency identification (RFID) assisting for indoor wireless local area networks (WLANs). The location of the MT of the extended KF positioning algorithm is extracted from the constant-speed trajectory and the radio propagation model. The observation information of the KF tracker is extracted from the empirical and RPM positioning methods. Specifically, a sensor-assisted method employs an RFID system to adapt the sequential selection cluster algorithm. As compared with the empirical method, not only can the RPM algorithm reduce the number of training data points and perform on-line calibration in the signal space, but the RPM and KF algorithms can alleviate the problem of aliasing. In addition, the KF tracker with the RFID-assisted scheme can calibrate the location estimation and improve the corner effect. Experimental results demonstrate that the proposed location-tracking algorithm using KF with the RFID-assisted scheme can achieve a high degree of location accuracy (i.e., more than 90% of the estimated positions have error distances of less than 2.1 m).</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11276-010-0240-8</doi><tpages>26</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1022-0038 |
ispartof | Wireless networks, 2010-10, Vol.16 (7), p.1987-2012 |
issn | 1022-0038 1572-8196 |
language | eng |
recordid | cdi_proquest_miscellaneous_818836244 |
source | ABI/INFORM Global; Springer Link |
subjects | Accuracy Adaptive algorithms Algorithms Communications Engineering Computer Communication Networks Electrical Engineering Engineering Global positioning systems GPS Indoor Infrastructure International IT in Business Local area networks Mathematical models Methods Network management systems Networks Noise Position (location) Probability distribution Propagation Radio communications Radio frequency Radio frequency identification Sensors Studies Wireless communication Wireless networks |
title | An adaptive location estimator using tracking algorithms for indoor WLANs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T13%3A13%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20adaptive%20location%20estimator%20using%20tracking%20algorithms%20for%20indoor%20WLANs&rft.jtitle=Wireless%20networks&rft.au=Chiou,%20Yih-Shyh&rft.date=2010-10-01&rft.volume=16&rft.issue=7&rft.spage=1987&rft.epage=2012&rft.pages=1987-2012&rft.issn=1022-0038&rft.eissn=1572-8196&rft_id=info:doi/10.1007/s11276-010-0240-8&rft_dat=%3Cproquest_cross%3E2145777531%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c347t-9e963d2971b5c8aad087b42e737c4c4832829c7215215c2bcaba5e2f687b245f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=753895890&rft_id=info:pmid/&rfr_iscdi=true |