Loading…
Substitutes and stability for matching with contracts
We consider the matching with contracts framework of Hatfield and Milgrom [20], and we introduce new concepts of bilateral and unilateral substitutes. We show that the bilateral substitutes condition is a sufficient condition for the existence of a stable allocation in this framework. However, the s...
Saved in:
Published in: | Journal of economic theory 2010-09, Vol.145 (5), p.1704-1723 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c521t-5346afe62b78d6df083b31cb0e0b3e2a77ba2ecd8c790a24bfc759479760aa543 |
---|---|
cites | cdi_FETCH-LOGICAL-c521t-5346afe62b78d6df083b31cb0e0b3e2a77ba2ecd8c790a24bfc759479760aa543 |
container_end_page | 1723 |
container_issue | 5 |
container_start_page | 1704 |
container_title | Journal of economic theory |
container_volume | 145 |
creator | Hatfield, John William Kojima, Fuhito |
description | We consider the matching with contracts framework of Hatfield and Milgrom
[20], and we introduce new concepts of bilateral and unilateral substitutes. We show that the bilateral substitutes condition is a sufficient condition for the existence of a stable allocation in this framework. However, the set of stable allocations does not form a lattice under this condition, and there does not necessarily exist a doctor-optimal stable allocation. Under a slightly stronger condition, unilateral substitutes, the set of stable allocations still does not necessarily form a lattice with respect to doctors' preferences, but there does exist a doctor-optimal stable allocation, and other key results such as incentive compatibility and the rural hospitals theorem are recovered. |
doi_str_mv | 10.1016/j.jet.2010.01.007 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_818839204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022053110000189</els_id><sourcerecordid>818839204</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-5346afe62b78d6df083b31cb0e0b3e2a77ba2ecd8c790a24bfc759479760aa543</originalsourceid><addsrcrecordid>eNqFkUFv1DAQha0KpC6FH8At4sIp2xk7jhNxQhWFSq04AOeR40y6jnaTxXZa7b_H20UceqCHsTX2957tZyHeI6wRsL4c1yOntYTcA64BzJlYIbS6NFLpV2IFIGUJWuG5eBPjCICo63ol9I-li8mnJXEs7NQXMdnOb306FMMcip1NbuOn--LRp03h5ikF61J8K14Pdhv53d_5Qvy6_vLz6lt5-_3rzdXn29JpianUqqrtwLXsTNPX_QCN6hS6Dhg6xdIa01nJrm-cacHKqhuc0W1lWlODtbpSF-LjyXcf5t8Lx0Q7Hx1vt3bieYnUYNOoVsLLpKllqxuUJpMfnpHjvIQpP4NMlQ9vpIYM4QlyYY4x8ED74Hc2HAiBjoHTSDlwOgZOgJQDz5q7kybwnt0_ATNncsMzPZCyWOk8HnI9SZX1uY5L--OmgYow_xht0i77fTr5cU74wXOg6DxPjnsf2CXqZ_-f2_wBkC2hIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>749478250</pqid></control><display><type>article</type><title>Substitutes and stability for matching with contracts</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>ScienceDirect Journals</source><creator>Hatfield, John William ; Kojima, Fuhito</creator><creatorcontrib>Hatfield, John William ; Kojima, Fuhito</creatorcontrib><description>We consider the matching with contracts framework of Hatfield and Milgrom
[20], and we introduce new concepts of bilateral and unilateral substitutes. We show that the bilateral substitutes condition is a sufficient condition for the existence of a stable allocation in this framework. However, the set of stable allocations does not form a lattice under this condition, and there does not necessarily exist a doctor-optimal stable allocation. Under a slightly stronger condition, unilateral substitutes, the set of stable allocations still does not necessarily form a lattice with respect to doctors' preferences, but there does exist a doctor-optimal stable allocation, and other key results such as incentive compatibility and the rural hospitals theorem are recovered.</description><identifier>ISSN: 0022-0531</identifier><identifier>EISSN: 1095-7235</identifier><identifier>DOI: 10.1016/j.jet.2010.01.007</identifier><identifier>CODEN: JECTAQ</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Allocations ; Bilateral substitutes ; Contracts ; Doctors ; Economic models ; Economic theory ; Economics ; Group strategy-proofness ; Health economics ; Hospital management ; Hospitals ; Incentives ; Lattice ; Lattices ; Law of aggregate demand ; Matching ; Matching with contracts ; Mathematical economics ; Preferences ; Resource allocation ; Rural hospitals theorem ; Stability ; Strategy-proofness ; Studies ; Substitutes ; Substitutes Bilateral substitutes Unilateral substitutes Matching Matching with contracts Law of aggregate demand Stability Strategy-proofness Rural hospitals theorem Group strategy-proofness Lattice ; Unilateral substitutes</subject><ispartof>Journal of economic theory, 2010-09, Vol.145 (5), p.1704-1723</ispartof><rights>2010 Elsevier Inc.</rights><rights>Copyright Elsevier Science Publishing Company, Inc. Sep 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-5346afe62b78d6df083b31cb0e0b3e2a77ba2ecd8c790a24bfc759479760aa543</citedby><cites>FETCH-LOGICAL-c521t-5346afe62b78d6df083b31cb0e0b3e2a77ba2ecd8c790a24bfc759479760aa543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,33223,33224</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeejetheo/v_3a145_3ay_3a2010_3ai_3a5_3ap_3a1704-1723.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Hatfield, John William</creatorcontrib><creatorcontrib>Kojima, Fuhito</creatorcontrib><title>Substitutes and stability for matching with contracts</title><title>Journal of economic theory</title><description>We consider the matching with contracts framework of Hatfield and Milgrom
[20], and we introduce new concepts of bilateral and unilateral substitutes. We show that the bilateral substitutes condition is a sufficient condition for the existence of a stable allocation in this framework. However, the set of stable allocations does not form a lattice under this condition, and there does not necessarily exist a doctor-optimal stable allocation. Under a slightly stronger condition, unilateral substitutes, the set of stable allocations still does not necessarily form a lattice with respect to doctors' preferences, but there does exist a doctor-optimal stable allocation, and other key results such as incentive compatibility and the rural hospitals theorem are recovered.</description><subject>Allocations</subject><subject>Bilateral substitutes</subject><subject>Contracts</subject><subject>Doctors</subject><subject>Economic models</subject><subject>Economic theory</subject><subject>Economics</subject><subject>Group strategy-proofness</subject><subject>Health economics</subject><subject>Hospital management</subject><subject>Hospitals</subject><subject>Incentives</subject><subject>Lattice</subject><subject>Lattices</subject><subject>Law of aggregate demand</subject><subject>Matching</subject><subject>Matching with contracts</subject><subject>Mathematical economics</subject><subject>Preferences</subject><subject>Resource allocation</subject><subject>Rural hospitals theorem</subject><subject>Stability</subject><subject>Strategy-proofness</subject><subject>Studies</subject><subject>Substitutes</subject><subject>Substitutes Bilateral substitutes Unilateral substitutes Matching Matching with contracts Law of aggregate demand Stability Strategy-proofness Rural hospitals theorem Group strategy-proofness Lattice</subject><subject>Unilateral substitutes</subject><issn>0022-0531</issn><issn>1095-7235</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNqFkUFv1DAQha0KpC6FH8At4sIp2xk7jhNxQhWFSq04AOeR40y6jnaTxXZa7b_H20UceqCHsTX2957tZyHeI6wRsL4c1yOntYTcA64BzJlYIbS6NFLpV2IFIGUJWuG5eBPjCICo63ol9I-li8mnJXEs7NQXMdnOb306FMMcip1NbuOn--LRp03h5ikF61J8K14Pdhv53d_5Qvy6_vLz6lt5-_3rzdXn29JpianUqqrtwLXsTNPX_QCN6hS6Dhg6xdIa01nJrm-cacHKqhuc0W1lWlODtbpSF-LjyXcf5t8Lx0Q7Hx1vt3bieYnUYNOoVsLLpKllqxuUJpMfnpHjvIQpP4NMlQ9vpIYM4QlyYY4x8ED74Hc2HAiBjoHTSDlwOgZOgJQDz5q7kybwnt0_ATNncsMzPZCyWOk8HnI9SZX1uY5L--OmgYow_xht0i77fTr5cU74wXOg6DxPjnsf2CXqZ_-f2_wBkC2hIA</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Hatfield, John William</creator><creator>Kojima, Fuhito</creator><general>Elsevier Inc</general><general>Elsevier</general><general>Elsevier Science Publishing Company, Inc</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>7TA</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20100901</creationdate><title>Substitutes and stability for matching with contracts</title><author>Hatfield, John William ; Kojima, Fuhito</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-5346afe62b78d6df083b31cb0e0b3e2a77ba2ecd8c790a24bfc759479760aa543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Allocations</topic><topic>Bilateral substitutes</topic><topic>Contracts</topic><topic>Doctors</topic><topic>Economic models</topic><topic>Economic theory</topic><topic>Economics</topic><topic>Group strategy-proofness</topic><topic>Health economics</topic><topic>Hospital management</topic><topic>Hospitals</topic><topic>Incentives</topic><topic>Lattice</topic><topic>Lattices</topic><topic>Law of aggregate demand</topic><topic>Matching</topic><topic>Matching with contracts</topic><topic>Mathematical economics</topic><topic>Preferences</topic><topic>Resource allocation</topic><topic>Rural hospitals theorem</topic><topic>Stability</topic><topic>Strategy-proofness</topic><topic>Studies</topic><topic>Substitutes</topic><topic>Substitutes Bilateral substitutes Unilateral substitutes Matching Matching with contracts Law of aggregate demand Stability Strategy-proofness Rural hospitals theorem Group strategy-proofness Lattice</topic><topic>Unilateral substitutes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hatfield, John William</creatorcontrib><creatorcontrib>Kojima, Fuhito</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Materials Business File</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of economic theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hatfield, John William</au><au>Kojima, Fuhito</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Substitutes and stability for matching with contracts</atitle><jtitle>Journal of economic theory</jtitle><date>2010-09-01</date><risdate>2010</risdate><volume>145</volume><issue>5</issue><spage>1704</spage><epage>1723</epage><pages>1704-1723</pages><issn>0022-0531</issn><eissn>1095-7235</eissn><coden>JECTAQ</coden><abstract>We consider the matching with contracts framework of Hatfield and Milgrom
[20], and we introduce new concepts of bilateral and unilateral substitutes. We show that the bilateral substitutes condition is a sufficient condition for the existence of a stable allocation in this framework. However, the set of stable allocations does not form a lattice under this condition, and there does not necessarily exist a doctor-optimal stable allocation. Under a slightly stronger condition, unilateral substitutes, the set of stable allocations still does not necessarily form a lattice with respect to doctors' preferences, but there does exist a doctor-optimal stable allocation, and other key results such as incentive compatibility and the rural hospitals theorem are recovered.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jet.2010.01.007</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0531 |
ispartof | Journal of economic theory, 2010-09, Vol.145 (5), p.1704-1723 |
issn | 0022-0531 1095-7235 |
language | eng |
recordid | cdi_proquest_miscellaneous_818839204 |
source | International Bibliography of the Social Sciences (IBSS); ScienceDirect Journals |
subjects | Allocations Bilateral substitutes Contracts Doctors Economic models Economic theory Economics Group strategy-proofness Health economics Hospital management Hospitals Incentives Lattice Lattices Law of aggregate demand Matching Matching with contracts Mathematical economics Preferences Resource allocation Rural hospitals theorem Stability Strategy-proofness Studies Substitutes Substitutes Bilateral substitutes Unilateral substitutes Matching Matching with contracts Law of aggregate demand Stability Strategy-proofness Rural hospitals theorem Group strategy-proofness Lattice Unilateral substitutes |
title | Substitutes and stability for matching with contracts |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A05%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Substitutes%20and%20stability%20for%20matching%20with%20contracts&rft.jtitle=Journal%20of%20economic%20theory&rft.au=Hatfield,%20John%20William&rft.date=2010-09-01&rft.volume=145&rft.issue=5&rft.spage=1704&rft.epage=1723&rft.pages=1704-1723&rft.issn=0022-0531&rft.eissn=1095-7235&rft.coden=JECTAQ&rft_id=info:doi/10.1016/j.jet.2010.01.007&rft_dat=%3Cproquest_cross%3E818839204%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c521t-5346afe62b78d6df083b31cb0e0b3e2a77ba2ecd8c790a24bfc759479760aa543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=749478250&rft_id=info:pmid/&rfr_iscdi=true |