Loading…

A Transmissible Plasmid Controlling Camphor Oxidation in Pseudomonas putida

Earlier papers demonstrated an extensive genetic exchange among fluorescent Pseudomonads; this one documents for genes specifying enzymes of peripheral dissimilation an extrachromosomal array, segregation, and frequent interstrain transfer. An hypothesis is presented of a general mechanism for the f...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 1973-03, Vol.70 (3), p.885-889
Main Authors: Rheinwald, J. G., Chakrabarty, A. M., Gunsalus, I. C.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c451t-47d5843e0fbd0194208a1a5b9e9eac90eb7d6d6e8cc88aa1ef7a7b6869ec33de3
cites
container_end_page 889
container_issue 3
container_start_page 885
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 70
creator Rheinwald, J. G.
Chakrabarty, A. M.
Gunsalus, I. C.
description Earlier papers demonstrated an extensive genetic exchange among fluorescent Pseudomonads; this one documents for genes specifying enzymes of peripheral dissimilation an extrachromosomal array, segregation, and frequent interstrain transfer. An hypothesis is presented of a general mechanism for the formation and maintenance of metabolic diversity. The example used, the path of oxidative cleavage of the carbocyclic rings of the bicyclic monoterpene D- and L-camphor, terminates in acetate release and isobutyrate chain debranching. By transduction, two gene linkage groups are shown for the reactions before and after isobutyrate. The group for reactions before isobutyrate is plasmid borne, cotransferable by conjugation, mitomycin curable, and shows a higher segregation rate from cells that are multiplasmid rather than carrying a single plasmid. The genes that code for isobutyrate and essential anaplerotic and amphibolic metabolism are chromosomal. By conjugation plasmid-borne genes are transferred at a higher frequency than are chromosomal, and are transferred in homologous crosses more frequently than between heterologous species. Most isobutyrate-positive fluorescent pseudomonad strains will accept and express the camphor plasmid.
doi_str_mv 10.1073/pnas.70.3.885
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_81958976</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>62381</jstor_id><sourcerecordid>62381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-47d5843e0fbd0194208a1a5b9e9eac90eb7d6d6e8cc88aa1ef7a7b6869ec33de3</originalsourceid><addsrcrecordid>eNp9kLFP3DAUhy3Uih6UkQW1UhbYcn0-O7E9MKAT0KpIMNDZcuIXMHLi1E4q-t_XpztO7dLJsr7vZ7_3I-SUwpKCYF_GwaSlgCVbSlkdkAUFRcuaK3hHFgArUUq-4h_IUUovAKAqCYfkkLOKSgoL8v2qeIxmSL1LyTUeiwdv8sUW6zBMMXjvhqdibfrxOcTi_tVZM7kwFG4oHhLONvQhf1-M85TJR_K-Mz7hye48Jj9urh_XX8u7-9tv66u7suUVnUoubCU5Q-gaC1TxFUhDTdUoVGhaBdgIW9saZdtKaQzFThjR1LJW2DJmkR2Ty-2749z0aFvMkxqvx-h6E3_rYJz-lwzuWT-FX5ozxiTN-YtdPoafM6ZJ5-1b9N4MGOakJc0tKVFnsdyKbQwpRez2f1DQm_L1pnwtQDOdy8_-578H29u7tjM_3_FN7I2-xXU3ez_h65S9T__xMj7b4pc0hbjn9Wqz3B8rvaMg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>81958976</pqid></control><display><type>article</type><title>A Transmissible Plasmid Controlling Camphor Oxidation in Pseudomonas putida</title><source>Open Access: PubMed Central</source><source>JSTOR Archival Journals</source><creator>Rheinwald, J. G. ; Chakrabarty, A. M. ; Gunsalus, I. C.</creator><creatorcontrib>Rheinwald, J. G. ; Chakrabarty, A. M. ; Gunsalus, I. C.</creatorcontrib><description>Earlier papers demonstrated an extensive genetic exchange among fluorescent Pseudomonads; this one documents for genes specifying enzymes of peripheral dissimilation an extrachromosomal array, segregation, and frequent interstrain transfer. An hypothesis is presented of a general mechanism for the formation and maintenance of metabolic diversity. The example used, the path of oxidative cleavage of the carbocyclic rings of the bicyclic monoterpene D- and L-camphor, terminates in acetate release and isobutyrate chain debranching. By transduction, two gene linkage groups are shown for the reactions before and after isobutyrate. The group for reactions before isobutyrate is plasmid borne, cotransferable by conjugation, mitomycin curable, and shows a higher segregation rate from cells that are multiplasmid rather than carrying a single plasmid. The genes that code for isobutyrate and essential anaplerotic and amphibolic metabolism are chromosomal. By conjugation plasmid-borne genes are transferred at a higher frequency than are chromosomal, and are transferred in homologous crosses more frequently than between heterologous species. Most isobutyrate-positive fluorescent pseudomonad strains will accept and express the camphor plasmid.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.70.3.885</identifier><identifier>PMID: 4351810</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>Biological Sciences: Genetics ; Camphor - metabolism ; Cell separation ; Conjugation, Genetic ; Enzymes ; Extrachromosomal Inheritance ; Genes ; Genetic Linkage ; Genetic loci ; Inclusion Bodies ; Metabolism ; Mutation ; Oxidation ; Oxidation-Reduction ; Phenotype ; Phenotypes ; Plasmids ; Pseudomonas ; Pseudomonas - metabolism ; Pseudomonas putida ; Transduction, Genetic</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1973-03, Vol.70 (3), p.885-889</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-47d5843e0fbd0194208a1a5b9e9eac90eb7d6d6e8cc88aa1ef7a7b6869ec33de3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/70/3.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/62381$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/62381$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774,58219,58452</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/4351810$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rheinwald, J. G.</creatorcontrib><creatorcontrib>Chakrabarty, A. M.</creatorcontrib><creatorcontrib>Gunsalus, I. C.</creatorcontrib><title>A Transmissible Plasmid Controlling Camphor Oxidation in Pseudomonas putida</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Earlier papers demonstrated an extensive genetic exchange among fluorescent Pseudomonads; this one documents for genes specifying enzymes of peripheral dissimilation an extrachromosomal array, segregation, and frequent interstrain transfer. An hypothesis is presented of a general mechanism for the formation and maintenance of metabolic diversity. The example used, the path of oxidative cleavage of the carbocyclic rings of the bicyclic monoterpene D- and L-camphor, terminates in acetate release and isobutyrate chain debranching. By transduction, two gene linkage groups are shown for the reactions before and after isobutyrate. The group for reactions before isobutyrate is plasmid borne, cotransferable by conjugation, mitomycin curable, and shows a higher segregation rate from cells that are multiplasmid rather than carrying a single plasmid. The genes that code for isobutyrate and essential anaplerotic and amphibolic metabolism are chromosomal. By conjugation plasmid-borne genes are transferred at a higher frequency than are chromosomal, and are transferred in homologous crosses more frequently than between heterologous species. Most isobutyrate-positive fluorescent pseudomonad strains will accept and express the camphor plasmid.</description><subject>Biological Sciences: Genetics</subject><subject>Camphor - metabolism</subject><subject>Cell separation</subject><subject>Conjugation, Genetic</subject><subject>Enzymes</subject><subject>Extrachromosomal Inheritance</subject><subject>Genes</subject><subject>Genetic Linkage</subject><subject>Genetic loci</subject><subject>Inclusion Bodies</subject><subject>Metabolism</subject><subject>Mutation</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Plasmids</subject><subject>Pseudomonas</subject><subject>Pseudomonas - metabolism</subject><subject>Pseudomonas putida</subject><subject>Transduction, Genetic</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1973</creationdate><recordtype>article</recordtype><recordid>eNp9kLFP3DAUhy3Uih6UkQW1UhbYcn0-O7E9MKAT0KpIMNDZcuIXMHLi1E4q-t_XpztO7dLJsr7vZ7_3I-SUwpKCYF_GwaSlgCVbSlkdkAUFRcuaK3hHFgArUUq-4h_IUUovAKAqCYfkkLOKSgoL8v2qeIxmSL1LyTUeiwdv8sUW6zBMMXjvhqdibfrxOcTi_tVZM7kwFG4oHhLONvQhf1-M85TJR_K-Mz7hye48Jj9urh_XX8u7-9tv66u7suUVnUoubCU5Q-gaC1TxFUhDTdUoVGhaBdgIW9saZdtKaQzFThjR1LJW2DJmkR2Ty-2749z0aFvMkxqvx-h6E3_rYJz-lwzuWT-FX5ozxiTN-YtdPoafM6ZJ5-1b9N4MGOakJc0tKVFnsdyKbQwpRez2f1DQm_L1pnwtQDOdy8_-578H29u7tjM_3_FN7I2-xXU3ez_h65S9T__xMj7b4pc0hbjn9Wqz3B8rvaMg</recordid><startdate>19730301</startdate><enddate>19730301</enddate><creator>Rheinwald, J. G.</creator><creator>Chakrabarty, A. M.</creator><creator>Gunsalus, I. C.</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19730301</creationdate><title>A Transmissible Plasmid Controlling Camphor Oxidation in Pseudomonas putida</title><author>Rheinwald, J. G. ; Chakrabarty, A. M. ; Gunsalus, I. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-47d5843e0fbd0194208a1a5b9e9eac90eb7d6d6e8cc88aa1ef7a7b6869ec33de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1973</creationdate><topic>Biological Sciences: Genetics</topic><topic>Camphor - metabolism</topic><topic>Cell separation</topic><topic>Conjugation, Genetic</topic><topic>Enzymes</topic><topic>Extrachromosomal Inheritance</topic><topic>Genes</topic><topic>Genetic Linkage</topic><topic>Genetic loci</topic><topic>Inclusion Bodies</topic><topic>Metabolism</topic><topic>Mutation</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Plasmids</topic><topic>Pseudomonas</topic><topic>Pseudomonas - metabolism</topic><topic>Pseudomonas putida</topic><topic>Transduction, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rheinwald, J. G.</creatorcontrib><creatorcontrib>Chakrabarty, A. M.</creatorcontrib><creatorcontrib>Gunsalus, I. C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rheinwald, J. G.</au><au>Chakrabarty, A. M.</au><au>Gunsalus, I. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Transmissible Plasmid Controlling Camphor Oxidation in Pseudomonas putida</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1973-03-01</date><risdate>1973</risdate><volume>70</volume><issue>3</issue><spage>885</spage><epage>889</epage><pages>885-889</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Earlier papers demonstrated an extensive genetic exchange among fluorescent Pseudomonads; this one documents for genes specifying enzymes of peripheral dissimilation an extrachromosomal array, segregation, and frequent interstrain transfer. An hypothesis is presented of a general mechanism for the formation and maintenance of metabolic diversity. The example used, the path of oxidative cleavage of the carbocyclic rings of the bicyclic monoterpene D- and L-camphor, terminates in acetate release and isobutyrate chain debranching. By transduction, two gene linkage groups are shown for the reactions before and after isobutyrate. The group for reactions before isobutyrate is plasmid borne, cotransferable by conjugation, mitomycin curable, and shows a higher segregation rate from cells that are multiplasmid rather than carrying a single plasmid. The genes that code for isobutyrate and essential anaplerotic and amphibolic metabolism are chromosomal. By conjugation plasmid-borne genes are transferred at a higher frequency than are chromosomal, and are transferred in homologous crosses more frequently than between heterologous species. Most isobutyrate-positive fluorescent pseudomonad strains will accept and express the camphor plasmid.</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>4351810</pmid><doi>10.1073/pnas.70.3.885</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 1973-03, Vol.70 (3), p.885-889
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_81958976
source Open Access: PubMed Central; JSTOR Archival Journals
subjects Biological Sciences: Genetics
Camphor - metabolism
Cell separation
Conjugation, Genetic
Enzymes
Extrachromosomal Inheritance
Genes
Genetic Linkage
Genetic loci
Inclusion Bodies
Metabolism
Mutation
Oxidation
Oxidation-Reduction
Phenotype
Phenotypes
Plasmids
Pseudomonas
Pseudomonas - metabolism
Pseudomonas putida
Transduction, Genetic
title A Transmissible Plasmid Controlling Camphor Oxidation in Pseudomonas putida
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A45%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Transmissible%20Plasmid%20Controlling%20Camphor%20Oxidation%20in%20Pseudomonas%20putida&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Rheinwald,%20J.%20G.&rft.date=1973-03-01&rft.volume=70&rft.issue=3&rft.spage=885&rft.epage=889&rft.pages=885-889&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.70.3.885&rft_dat=%3Cjstor_proqu%3E62381%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c451t-47d5843e0fbd0194208a1a5b9e9eac90eb7d6d6e8cc88aa1ef7a7b6869ec33de3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=81958976&rft_id=info:pmid/4351810&rft_jstor_id=62381&rfr_iscdi=true