Loading…
A Transmissible Plasmid Controlling Camphor Oxidation in Pseudomonas putida
Earlier papers demonstrated an extensive genetic exchange among fluorescent Pseudomonads; this one documents for genes specifying enzymes of peripheral dissimilation an extrachromosomal array, segregation, and frequent interstrain transfer. An hypothesis is presented of a general mechanism for the f...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 1973-03, Vol.70 (3), p.885-889 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c451t-47d5843e0fbd0194208a1a5b9e9eac90eb7d6d6e8cc88aa1ef7a7b6869ec33de3 |
---|---|
cites | |
container_end_page | 889 |
container_issue | 3 |
container_start_page | 885 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 70 |
creator | Rheinwald, J. G. Chakrabarty, A. M. Gunsalus, I. C. |
description | Earlier papers demonstrated an extensive genetic exchange among fluorescent Pseudomonads; this one documents for genes specifying enzymes of peripheral dissimilation an extrachromosomal array, segregation, and frequent interstrain transfer. An hypothesis is presented of a general mechanism for the formation and maintenance of metabolic diversity. The example used, the path of oxidative cleavage of the carbocyclic rings of the bicyclic monoterpene D- and L-camphor, terminates in acetate release and isobutyrate chain debranching. By transduction, two gene linkage groups are shown for the reactions before and after isobutyrate. The group for reactions before isobutyrate is plasmid borne, cotransferable by conjugation, mitomycin curable, and shows a higher segregation rate from cells that are multiplasmid rather than carrying a single plasmid. The genes that code for isobutyrate and essential anaplerotic and amphibolic metabolism are chromosomal. By conjugation plasmid-borne genes are transferred at a higher frequency than are chromosomal, and are transferred in homologous crosses more frequently than between heterologous species. Most isobutyrate-positive fluorescent pseudomonad strains will accept and express the camphor plasmid. |
doi_str_mv | 10.1073/pnas.70.3.885 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_81958976</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>62381</jstor_id><sourcerecordid>62381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-47d5843e0fbd0194208a1a5b9e9eac90eb7d6d6e8cc88aa1ef7a7b6869ec33de3</originalsourceid><addsrcrecordid>eNp9kLFP3DAUhy3Uih6UkQW1UhbYcn0-O7E9MKAT0KpIMNDZcuIXMHLi1E4q-t_XpztO7dLJsr7vZ7_3I-SUwpKCYF_GwaSlgCVbSlkdkAUFRcuaK3hHFgArUUq-4h_IUUovAKAqCYfkkLOKSgoL8v2qeIxmSL1LyTUeiwdv8sUW6zBMMXjvhqdibfrxOcTi_tVZM7kwFG4oHhLONvQhf1-M85TJR_K-Mz7hye48Jj9urh_XX8u7-9tv66u7suUVnUoubCU5Q-gaC1TxFUhDTdUoVGhaBdgIW9saZdtKaQzFThjR1LJW2DJmkR2Ty-2749z0aFvMkxqvx-h6E3_rYJz-lwzuWT-FX5ozxiTN-YtdPoafM6ZJ5-1b9N4MGOakJc0tKVFnsdyKbQwpRez2f1DQm_L1pnwtQDOdy8_-578H29u7tjM_3_FN7I2-xXU3ez_h65S9T__xMj7b4pc0hbjn9Wqz3B8rvaMg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>81958976</pqid></control><display><type>article</type><title>A Transmissible Plasmid Controlling Camphor Oxidation in Pseudomonas putida</title><source>Open Access: PubMed Central</source><source>JSTOR Archival Journals</source><creator>Rheinwald, J. G. ; Chakrabarty, A. M. ; Gunsalus, I. C.</creator><creatorcontrib>Rheinwald, J. G. ; Chakrabarty, A. M. ; Gunsalus, I. C.</creatorcontrib><description>Earlier papers demonstrated an extensive genetic exchange among fluorescent Pseudomonads; this one documents for genes specifying enzymes of peripheral dissimilation an extrachromosomal array, segregation, and frequent interstrain transfer. An hypothesis is presented of a general mechanism for the formation and maintenance of metabolic diversity. The example used, the path of oxidative cleavage of the carbocyclic rings of the bicyclic monoterpene D- and L-camphor, terminates in acetate release and isobutyrate chain debranching. By transduction, two gene linkage groups are shown for the reactions before and after isobutyrate. The group for reactions before isobutyrate is plasmid borne, cotransferable by conjugation, mitomycin curable, and shows a higher segregation rate from cells that are multiplasmid rather than carrying a single plasmid. The genes that code for isobutyrate and essential anaplerotic and amphibolic metabolism are chromosomal. By conjugation plasmid-borne genes are transferred at a higher frequency than are chromosomal, and are transferred in homologous crosses more frequently than between heterologous species. Most isobutyrate-positive fluorescent pseudomonad strains will accept and express the camphor plasmid.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.70.3.885</identifier><identifier>PMID: 4351810</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>Biological Sciences: Genetics ; Camphor - metabolism ; Cell separation ; Conjugation, Genetic ; Enzymes ; Extrachromosomal Inheritance ; Genes ; Genetic Linkage ; Genetic loci ; Inclusion Bodies ; Metabolism ; Mutation ; Oxidation ; Oxidation-Reduction ; Phenotype ; Phenotypes ; Plasmids ; Pseudomonas ; Pseudomonas - metabolism ; Pseudomonas putida ; Transduction, Genetic</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1973-03, Vol.70 (3), p.885-889</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-47d5843e0fbd0194208a1a5b9e9eac90eb7d6d6e8cc88aa1ef7a7b6869ec33de3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/70/3.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/62381$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/62381$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774,58219,58452</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/4351810$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rheinwald, J. G.</creatorcontrib><creatorcontrib>Chakrabarty, A. M.</creatorcontrib><creatorcontrib>Gunsalus, I. C.</creatorcontrib><title>A Transmissible Plasmid Controlling Camphor Oxidation in Pseudomonas putida</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Earlier papers demonstrated an extensive genetic exchange among fluorescent Pseudomonads; this one documents for genes specifying enzymes of peripheral dissimilation an extrachromosomal array, segregation, and frequent interstrain transfer. An hypothesis is presented of a general mechanism for the formation and maintenance of metabolic diversity. The example used, the path of oxidative cleavage of the carbocyclic rings of the bicyclic monoterpene D- and L-camphor, terminates in acetate release and isobutyrate chain debranching. By transduction, two gene linkage groups are shown for the reactions before and after isobutyrate. The group for reactions before isobutyrate is plasmid borne, cotransferable by conjugation, mitomycin curable, and shows a higher segregation rate from cells that are multiplasmid rather than carrying a single plasmid. The genes that code for isobutyrate and essential anaplerotic and amphibolic metabolism are chromosomal. By conjugation plasmid-borne genes are transferred at a higher frequency than are chromosomal, and are transferred in homologous crosses more frequently than between heterologous species. Most isobutyrate-positive fluorescent pseudomonad strains will accept and express the camphor plasmid.</description><subject>Biological Sciences: Genetics</subject><subject>Camphor - metabolism</subject><subject>Cell separation</subject><subject>Conjugation, Genetic</subject><subject>Enzymes</subject><subject>Extrachromosomal Inheritance</subject><subject>Genes</subject><subject>Genetic Linkage</subject><subject>Genetic loci</subject><subject>Inclusion Bodies</subject><subject>Metabolism</subject><subject>Mutation</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Plasmids</subject><subject>Pseudomonas</subject><subject>Pseudomonas - metabolism</subject><subject>Pseudomonas putida</subject><subject>Transduction, Genetic</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1973</creationdate><recordtype>article</recordtype><recordid>eNp9kLFP3DAUhy3Uih6UkQW1UhbYcn0-O7E9MKAT0KpIMNDZcuIXMHLi1E4q-t_XpztO7dLJsr7vZ7_3I-SUwpKCYF_GwaSlgCVbSlkdkAUFRcuaK3hHFgArUUq-4h_IUUovAKAqCYfkkLOKSgoL8v2qeIxmSL1LyTUeiwdv8sUW6zBMMXjvhqdibfrxOcTi_tVZM7kwFG4oHhLONvQhf1-M85TJR_K-Mz7hye48Jj9urh_XX8u7-9tv66u7suUVnUoubCU5Q-gaC1TxFUhDTdUoVGhaBdgIW9saZdtKaQzFThjR1LJW2DJmkR2Ty-2749z0aFvMkxqvx-h6E3_rYJz-lwzuWT-FX5ozxiTN-YtdPoafM6ZJ5-1b9N4MGOakJc0tKVFnsdyKbQwpRez2f1DQm_L1pnwtQDOdy8_-578H29u7tjM_3_FN7I2-xXU3ez_h65S9T__xMj7b4pc0hbjn9Wqz3B8rvaMg</recordid><startdate>19730301</startdate><enddate>19730301</enddate><creator>Rheinwald, J. G.</creator><creator>Chakrabarty, A. M.</creator><creator>Gunsalus, I. C.</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19730301</creationdate><title>A Transmissible Plasmid Controlling Camphor Oxidation in Pseudomonas putida</title><author>Rheinwald, J. G. ; Chakrabarty, A. M. ; Gunsalus, I. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-47d5843e0fbd0194208a1a5b9e9eac90eb7d6d6e8cc88aa1ef7a7b6869ec33de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1973</creationdate><topic>Biological Sciences: Genetics</topic><topic>Camphor - metabolism</topic><topic>Cell separation</topic><topic>Conjugation, Genetic</topic><topic>Enzymes</topic><topic>Extrachromosomal Inheritance</topic><topic>Genes</topic><topic>Genetic Linkage</topic><topic>Genetic loci</topic><topic>Inclusion Bodies</topic><topic>Metabolism</topic><topic>Mutation</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Plasmids</topic><topic>Pseudomonas</topic><topic>Pseudomonas - metabolism</topic><topic>Pseudomonas putida</topic><topic>Transduction, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rheinwald, J. G.</creatorcontrib><creatorcontrib>Chakrabarty, A. M.</creatorcontrib><creatorcontrib>Gunsalus, I. C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rheinwald, J. G.</au><au>Chakrabarty, A. M.</au><au>Gunsalus, I. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Transmissible Plasmid Controlling Camphor Oxidation in Pseudomonas putida</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1973-03-01</date><risdate>1973</risdate><volume>70</volume><issue>3</issue><spage>885</spage><epage>889</epage><pages>885-889</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Earlier papers demonstrated an extensive genetic exchange among fluorescent Pseudomonads; this one documents for genes specifying enzymes of peripheral dissimilation an extrachromosomal array, segregation, and frequent interstrain transfer. An hypothesis is presented of a general mechanism for the formation and maintenance of metabolic diversity. The example used, the path of oxidative cleavage of the carbocyclic rings of the bicyclic monoterpene D- and L-camphor, terminates in acetate release and isobutyrate chain debranching. By transduction, two gene linkage groups are shown for the reactions before and after isobutyrate. The group for reactions before isobutyrate is plasmid borne, cotransferable by conjugation, mitomycin curable, and shows a higher segregation rate from cells that are multiplasmid rather than carrying a single plasmid. The genes that code for isobutyrate and essential anaplerotic and amphibolic metabolism are chromosomal. By conjugation plasmid-borne genes are transferred at a higher frequency than are chromosomal, and are transferred in homologous crosses more frequently than between heterologous species. Most isobutyrate-positive fluorescent pseudomonad strains will accept and express the camphor plasmid.</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>4351810</pmid><doi>10.1073/pnas.70.3.885</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 1973-03, Vol.70 (3), p.885-889 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_miscellaneous_81958976 |
source | Open Access: PubMed Central; JSTOR Archival Journals |
subjects | Biological Sciences: Genetics Camphor - metabolism Cell separation Conjugation, Genetic Enzymes Extrachromosomal Inheritance Genes Genetic Linkage Genetic loci Inclusion Bodies Metabolism Mutation Oxidation Oxidation-Reduction Phenotype Phenotypes Plasmids Pseudomonas Pseudomonas - metabolism Pseudomonas putida Transduction, Genetic |
title | A Transmissible Plasmid Controlling Camphor Oxidation in Pseudomonas putida |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A45%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Transmissible%20Plasmid%20Controlling%20Camphor%20Oxidation%20in%20Pseudomonas%20putida&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Rheinwald,%20J.%20G.&rft.date=1973-03-01&rft.volume=70&rft.issue=3&rft.spage=885&rft.epage=889&rft.pages=885-889&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.70.3.885&rft_dat=%3Cjstor_proqu%3E62381%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c451t-47d5843e0fbd0194208a1a5b9e9eac90eb7d6d6e8cc88aa1ef7a7b6869ec33de3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=81958976&rft_id=info:pmid/4351810&rft_jstor_id=62381&rfr_iscdi=true |