Loading…
Biogenesis of Mitochondria: Dual Role of Tom7 in Modulating Assembly of the Preprotein Translocase of the Outer Membrane
Biogenesis of the translocase of the outer mitochondrial membrane (TOM complex) involves the assembly of the central β-barrel forming protein Tom40 with six different subunits that are embedded in the membrane via α-helical transmembrane segments. The sorting and assembly machinery (SAM complex) of...
Saved in:
Published in: | Journal of molecular biology 2011-01, Vol.405 (1), p.113-124 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c442t-a404dffb320d6d73614240fca09a2ea95fbe83b5e38a5ecfa8b1ec81305cb4dc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c442t-a404dffb320d6d73614240fca09a2ea95fbe83b5e38a5ecfa8b1ec81305cb4dc3 |
container_end_page | 124 |
container_issue | 1 |
container_start_page | 113 |
container_title | Journal of molecular biology |
container_volume | 405 |
creator | Becker, Thomas Wenz, Lena-Sophie Thornton, Nicolas Stroud, David Meisinger, Chris Wiedemann, Nils Pfanner, Nikolaus |
description | Biogenesis of the translocase of the outer mitochondrial membrane (TOM complex) involves the assembly of the central β-barrel forming protein Tom40 with six different subunits that are embedded in the membrane via α-helical transmembrane segments. The sorting and assembly machinery (SAM complex) of the outer membrane plays a central role in this process. The SAM complex mediates the membrane integration of β-barrel precursor proteins including Tom40. The small Tom proteins Tom5 and Tom6 associate with the precursor of Tom40 at the SAM complex at an early stage of the assembly process and play a stimulatory role in the formation of the mature TOM complex. A fraction of the SAM components interacts with the outer membrane protein mitochondrial distribution and morphology protein 10 (Mdm10) to form the SAM–Mdm10 machinery; however, different views exist on the function of the SAM–Mdm10 complex. We report here that the third small Tom protein, Tom7, plays an inhibitory role at two distinct steps in the biogenesis of the TOM complex. First, Tom7 plays an antagonistic role to Tom5 and Tom6 at the early stage of Tom40 assembly at the SAM complex. Second, Tom7 interacts with Mdm10 that is not bound to the SAM complex, and thus promotes dissociation of the SAM–Mdm10 complex. Since the SAM–Mdm10 complex is required for the biogenesis of Tom22, Tom7 delays the assembly of Tom22 with Tom40 at a late stage of assembly of the TOM complex. Thus, Tom7 modulates the biogenesis of topologically different proteins, the β-barrel forming protein Tom40 and Tom22 that contains a transmembrane α-helix. |
doi_str_mv | 10.1016/j.jmb.2010.11.002 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_820791476</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022283610012027</els_id><sourcerecordid>820791476</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-a404dffb320d6d73614240fca09a2ea95fbe83b5e38a5ecfa8b1ec81305cb4dc3</originalsourceid><addsrcrecordid>eNp9kU1v1DAYhC0EokvLD-ACvnHK4s_EgVMpLVTqqgi2Z8uxX2-9SuJiJ4j--zralmNPlj3PjEZjhN5RsqaE1p_26_3QrRlZ7nRNCHuBVpSotlI1Vy_RqrywiileH6E3Oe8JIZIL9RodMUpky2WzQv--hriDEXLIOHq8CVO0t3F0KZjP-Ntsevwr9rBI2zg0OIx4E93cmymMO3yaMwxdf7_I0y3gnwnuUpygUNtkxtxHazI8qdfzBAlviqNocIJeedNnePt4HqObi_Pt2Y_q6vr75dnpVWWFYFNlBBHO-44z4mrX8JoKJoi3hrSGgWml70DxTgJXRoL1RnUUrKKcSNsJZ_kx-njILc3-zJAnPYRsoe9LhzhnrRhpWiqaupD0QNoUc07g9V0Kg0n3mhK97K33uuytl701pbqsWzzvH9PnbgD33_E0cAE-HABvoja7FLK--V0SZPkMUXMhC_HlQEBZ4W-ApLMNMFpwIYGdtIvhmQIPGyya2Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>820791476</pqid></control><display><type>article</type><title>Biogenesis of Mitochondria: Dual Role of Tom7 in Modulating Assembly of the Preprotein Translocase of the Outer Membrane</title><source>ScienceDirect Journals</source><creator>Becker, Thomas ; Wenz, Lena-Sophie ; Thornton, Nicolas ; Stroud, David ; Meisinger, Chris ; Wiedemann, Nils ; Pfanner, Nikolaus</creator><creatorcontrib>Becker, Thomas ; Wenz, Lena-Sophie ; Thornton, Nicolas ; Stroud, David ; Meisinger, Chris ; Wiedemann, Nils ; Pfanner, Nikolaus</creatorcontrib><description>Biogenesis of the translocase of the outer mitochondrial membrane (TOM complex) involves the assembly of the central β-barrel forming protein Tom40 with six different subunits that are embedded in the membrane via α-helical transmembrane segments. The sorting and assembly machinery (SAM complex) of the outer membrane plays a central role in this process. The SAM complex mediates the membrane integration of β-barrel precursor proteins including Tom40. The small Tom proteins Tom5 and Tom6 associate with the precursor of Tom40 at the SAM complex at an early stage of the assembly process and play a stimulatory role in the formation of the mature TOM complex. A fraction of the SAM components interacts with the outer membrane protein mitochondrial distribution and morphology protein 10 (Mdm10) to form the SAM–Mdm10 machinery; however, different views exist on the function of the SAM–Mdm10 complex. We report here that the third small Tom protein, Tom7, plays an inhibitory role at two distinct steps in the biogenesis of the TOM complex. First, Tom7 plays an antagonistic role to Tom5 and Tom6 at the early stage of Tom40 assembly at the SAM complex. Second, Tom7 interacts with Mdm10 that is not bound to the SAM complex, and thus promotes dissociation of the SAM–Mdm10 complex. Since the SAM–Mdm10 complex is required for the biogenesis of Tom22, Tom7 delays the assembly of Tom22 with Tom40 at a late stage of assembly of the TOM complex. Thus, Tom7 modulates the biogenesis of topologically different proteins, the β-barrel forming protein Tom40 and Tom22 that contains a transmembrane α-helix.</description><identifier>ISSN: 0022-2836</identifier><identifier>EISSN: 1089-8638</identifier><identifier>DOI: 10.1016/j.jmb.2010.11.002</identifier><identifier>PMID: 21059357</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>biogenesis ; dissociation ; Mdm10 ; Membrane Proteins - metabolism ; Membrane Transport Proteins - metabolism ; mitochondria ; Mitochondria - metabolism ; mitochondrial membrane ; Mitochondrial Membrane Transport Proteins - antagonists & inhibitors ; Mitochondrial Membrane Transport Proteins - metabolism ; Mitochondrial Membranes - metabolism ; outer membrane proteins ; Protein Binding ; Protein Multimerization ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae Proteins - antagonists & inhibitors ; Saccharomyces cerevisiae Proteins - metabolism ; SAM complex ; Sam50 ; sorting ; TOM complex</subject><ispartof>Journal of molecular biology, 2011-01, Vol.405 (1), p.113-124</ispartof><rights>2010 Elsevier Ltd</rights><rights>Copyright © 2010 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-a404dffb320d6d73614240fca09a2ea95fbe83b5e38a5ecfa8b1ec81305cb4dc3</citedby><cites>FETCH-LOGICAL-c442t-a404dffb320d6d73614240fca09a2ea95fbe83b5e38a5ecfa8b1ec81305cb4dc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21059357$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Becker, Thomas</creatorcontrib><creatorcontrib>Wenz, Lena-Sophie</creatorcontrib><creatorcontrib>Thornton, Nicolas</creatorcontrib><creatorcontrib>Stroud, David</creatorcontrib><creatorcontrib>Meisinger, Chris</creatorcontrib><creatorcontrib>Wiedemann, Nils</creatorcontrib><creatorcontrib>Pfanner, Nikolaus</creatorcontrib><title>Biogenesis of Mitochondria: Dual Role of Tom7 in Modulating Assembly of the Preprotein Translocase of the Outer Membrane</title><title>Journal of molecular biology</title><addtitle>J Mol Biol</addtitle><description>Biogenesis of the translocase of the outer mitochondrial membrane (TOM complex) involves the assembly of the central β-barrel forming protein Tom40 with six different subunits that are embedded in the membrane via α-helical transmembrane segments. The sorting and assembly machinery (SAM complex) of the outer membrane plays a central role in this process. The SAM complex mediates the membrane integration of β-barrel precursor proteins including Tom40. The small Tom proteins Tom5 and Tom6 associate with the precursor of Tom40 at the SAM complex at an early stage of the assembly process and play a stimulatory role in the formation of the mature TOM complex. A fraction of the SAM components interacts with the outer membrane protein mitochondrial distribution and morphology protein 10 (Mdm10) to form the SAM–Mdm10 machinery; however, different views exist on the function of the SAM–Mdm10 complex. We report here that the third small Tom protein, Tom7, plays an inhibitory role at two distinct steps in the biogenesis of the TOM complex. First, Tom7 plays an antagonistic role to Tom5 and Tom6 at the early stage of Tom40 assembly at the SAM complex. Second, Tom7 interacts with Mdm10 that is not bound to the SAM complex, and thus promotes dissociation of the SAM–Mdm10 complex. Since the SAM–Mdm10 complex is required for the biogenesis of Tom22, Tom7 delays the assembly of Tom22 with Tom40 at a late stage of assembly of the TOM complex. Thus, Tom7 modulates the biogenesis of topologically different proteins, the β-barrel forming protein Tom40 and Tom22 that contains a transmembrane α-helix.</description><subject>biogenesis</subject><subject>dissociation</subject><subject>Mdm10</subject><subject>Membrane Proteins - metabolism</subject><subject>Membrane Transport Proteins - metabolism</subject><subject>mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>mitochondrial membrane</subject><subject>Mitochondrial Membrane Transport Proteins - antagonists & inhibitors</subject><subject>Mitochondrial Membrane Transport Proteins - metabolism</subject><subject>Mitochondrial Membranes - metabolism</subject><subject>outer membrane proteins</subject><subject>Protein Binding</subject><subject>Protein Multimerization</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae Proteins - antagonists & inhibitors</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>SAM complex</subject><subject>Sam50</subject><subject>sorting</subject><subject>TOM complex</subject><issn>0022-2836</issn><issn>1089-8638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kU1v1DAYhC0EokvLD-ACvnHK4s_EgVMpLVTqqgi2Z8uxX2-9SuJiJ4j--zralmNPlj3PjEZjhN5RsqaE1p_26_3QrRlZ7nRNCHuBVpSotlI1Vy_RqrywiileH6E3Oe8JIZIL9RodMUpky2WzQv--hriDEXLIOHq8CVO0t3F0KZjP-Ntsevwr9rBI2zg0OIx4E93cmymMO3yaMwxdf7_I0y3gnwnuUpygUNtkxtxHazI8qdfzBAlviqNocIJeedNnePt4HqObi_Pt2Y_q6vr75dnpVWWFYFNlBBHO-44z4mrX8JoKJoi3hrSGgWml70DxTgJXRoL1RnUUrKKcSNsJZ_kx-njILc3-zJAnPYRsoe9LhzhnrRhpWiqaupD0QNoUc07g9V0Kg0n3mhK97K33uuytl701pbqsWzzvH9PnbgD33_E0cAE-HABvoja7FLK--V0SZPkMUXMhC_HlQEBZ4W-ApLMNMFpwIYGdtIvhmQIPGyya2Q</recordid><startdate>20110107</startdate><enddate>20110107</enddate><creator>Becker, Thomas</creator><creator>Wenz, Lena-Sophie</creator><creator>Thornton, Nicolas</creator><creator>Stroud, David</creator><creator>Meisinger, Chris</creator><creator>Wiedemann, Nils</creator><creator>Pfanner, Nikolaus</creator><general>Elsevier Ltd</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20110107</creationdate><title>Biogenesis of Mitochondria: Dual Role of Tom7 in Modulating Assembly of the Preprotein Translocase of the Outer Membrane</title><author>Becker, Thomas ; Wenz, Lena-Sophie ; Thornton, Nicolas ; Stroud, David ; Meisinger, Chris ; Wiedemann, Nils ; Pfanner, Nikolaus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-a404dffb320d6d73614240fca09a2ea95fbe83b5e38a5ecfa8b1ec81305cb4dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>biogenesis</topic><topic>dissociation</topic><topic>Mdm10</topic><topic>Membrane Proteins - metabolism</topic><topic>Membrane Transport Proteins - metabolism</topic><topic>mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>mitochondrial membrane</topic><topic>Mitochondrial Membrane Transport Proteins - antagonists & inhibitors</topic><topic>Mitochondrial Membrane Transport Proteins - metabolism</topic><topic>Mitochondrial Membranes - metabolism</topic><topic>outer membrane proteins</topic><topic>Protein Binding</topic><topic>Protein Multimerization</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae Proteins - antagonists & inhibitors</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>SAM complex</topic><topic>Sam50</topic><topic>sorting</topic><topic>TOM complex</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Becker, Thomas</creatorcontrib><creatorcontrib>Wenz, Lena-Sophie</creatorcontrib><creatorcontrib>Thornton, Nicolas</creatorcontrib><creatorcontrib>Stroud, David</creatorcontrib><creatorcontrib>Meisinger, Chris</creatorcontrib><creatorcontrib>Wiedemann, Nils</creatorcontrib><creatorcontrib>Pfanner, Nikolaus</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Becker, Thomas</au><au>Wenz, Lena-Sophie</au><au>Thornton, Nicolas</au><au>Stroud, David</au><au>Meisinger, Chris</au><au>Wiedemann, Nils</au><au>Pfanner, Nikolaus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biogenesis of Mitochondria: Dual Role of Tom7 in Modulating Assembly of the Preprotein Translocase of the Outer Membrane</atitle><jtitle>Journal of molecular biology</jtitle><addtitle>J Mol Biol</addtitle><date>2011-01-07</date><risdate>2011</risdate><volume>405</volume><issue>1</issue><spage>113</spage><epage>124</epage><pages>113-124</pages><issn>0022-2836</issn><eissn>1089-8638</eissn><abstract>Biogenesis of the translocase of the outer mitochondrial membrane (TOM complex) involves the assembly of the central β-barrel forming protein Tom40 with six different subunits that are embedded in the membrane via α-helical transmembrane segments. The sorting and assembly machinery (SAM complex) of the outer membrane plays a central role in this process. The SAM complex mediates the membrane integration of β-barrel precursor proteins including Tom40. The small Tom proteins Tom5 and Tom6 associate with the precursor of Tom40 at the SAM complex at an early stage of the assembly process and play a stimulatory role in the formation of the mature TOM complex. A fraction of the SAM components interacts with the outer membrane protein mitochondrial distribution and morphology protein 10 (Mdm10) to form the SAM–Mdm10 machinery; however, different views exist on the function of the SAM–Mdm10 complex. We report here that the third small Tom protein, Tom7, plays an inhibitory role at two distinct steps in the biogenesis of the TOM complex. First, Tom7 plays an antagonistic role to Tom5 and Tom6 at the early stage of Tom40 assembly at the SAM complex. Second, Tom7 interacts with Mdm10 that is not bound to the SAM complex, and thus promotes dissociation of the SAM–Mdm10 complex. Since the SAM–Mdm10 complex is required for the biogenesis of Tom22, Tom7 delays the assembly of Tom22 with Tom40 at a late stage of assembly of the TOM complex. Thus, Tom7 modulates the biogenesis of topologically different proteins, the β-barrel forming protein Tom40 and Tom22 that contains a transmembrane α-helix.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>21059357</pmid><doi>10.1016/j.jmb.2010.11.002</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2836 |
ispartof | Journal of molecular biology, 2011-01, Vol.405 (1), p.113-124 |
issn | 0022-2836 1089-8638 |
language | eng |
recordid | cdi_proquest_miscellaneous_820791476 |
source | ScienceDirect Journals |
subjects | biogenesis dissociation Mdm10 Membrane Proteins - metabolism Membrane Transport Proteins - metabolism mitochondria Mitochondria - metabolism mitochondrial membrane Mitochondrial Membrane Transport Proteins - antagonists & inhibitors Mitochondrial Membrane Transport Proteins - metabolism Mitochondrial Membranes - metabolism outer membrane proteins Protein Binding Protein Multimerization Saccharomyces cerevisiae Saccharomyces cerevisiae Proteins - antagonists & inhibitors Saccharomyces cerevisiae Proteins - metabolism SAM complex Sam50 sorting TOM complex |
title | Biogenesis of Mitochondria: Dual Role of Tom7 in Modulating Assembly of the Preprotein Translocase of the Outer Membrane |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T18%3A21%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biogenesis%20of%20Mitochondria:%20Dual%20Role%20of%20Tom7%20in%20Modulating%20Assembly%20of%20the%20Preprotein%20Translocase%20of%20the%20Outer%20Membrane&rft.jtitle=Journal%20of%20molecular%20biology&rft.au=Becker,%20Thomas&rft.date=2011-01-07&rft.volume=405&rft.issue=1&rft.spage=113&rft.epage=124&rft.pages=113-124&rft.issn=0022-2836&rft.eissn=1089-8638&rft_id=info:doi/10.1016/j.jmb.2010.11.002&rft_dat=%3Cproquest_cross%3E820791476%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c442t-a404dffb320d6d73614240fca09a2ea95fbe83b5e38a5ecfa8b1ec81305cb4dc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=820791476&rft_id=info:pmid/21059357&rfr_iscdi=true |