Loading…

Comparison of the duplex-destabilizing effects of nucleobase-caged oligonucleotides

Nucleobase-caged oligonucleotide residues have photolabile “caging groups” that prevent the formation of Watson-Crick base pairs until the unmodified nucleobase is restored in a photolysis event. This principle can be used to put a growing variety of powerful nucleic acid-based applications under th...

Full description

Saved in:
Bibliographic Details
Published in:Analytical and bioanalytical chemistry 2011, Vol.399 (1), p.441-447
Main Authors: Rodrigues-Correia, Alexandre, Koeppel, Martin B, Schäfer, Florian, Joshi, K. B, Mack, Timo, Heckel, Alexander
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c436t-1052dd3cb90249f6fe8c615b1d78658cf9e038653fe210a1e509660b73139eca3
cites cdi_FETCH-LOGICAL-c436t-1052dd3cb90249f6fe8c615b1d78658cf9e038653fe210a1e509660b73139eca3
container_end_page 447
container_issue 1
container_start_page 441
container_title Analytical and bioanalytical chemistry
container_volume 399
creator Rodrigues-Correia, Alexandre
Koeppel, Martin B
Schäfer, Florian
Joshi, K. B
Mack, Timo
Heckel, Alexander
description Nucleobase-caged oligonucleotide residues have photolabile “caging groups” that prevent the formation of Watson-Crick base pairs until the unmodified nucleobase is restored in a photolysis event. This principle can be used to put a growing variety of powerful nucleic acid-based applications under the precise spatiotemporal control using light as an addressing mechanism. Examples for applications include light control of transcription, RNAi, nucleic acid folding, primer extension, and restriction endonuclease as well as DNAzyme, aptamer, and antisense activity. However, a comparison of the duplex-destabilization properties of the various caged residues that have been used up to date and rules for achieving a maximal duplex destabilization with a minimum amount of modified residues are still missing. We present both a comparison of the duplex-destabilizing capabilities of various nucleobase-caged residues and address the question of influence on neighboring base pairs. [graphic removed]
doi_str_mv 10.1007/s00216-010-4274-7
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_822361948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A398342990</galeid><sourcerecordid>A398342990</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-1052dd3cb90249f6fe8c615b1d78658cf9e038653fe210a1e509660b73139eca3</originalsourceid><addsrcrecordid>eNp9kc1u3SAQRq2qUZOmfYBuWm-qrJzMgI1hGV31T4qURZI1wnhwiWxzC7aU9OnLlW_TXcWC0XAOjD6K4gPCJQK0VwmAoagAoapZW1ftq-IMBcqKiQZev9Q1Oy3epvQIgI1E8aY4ZaAa3rZwVtztwrQ30acwl8GVy08q-3U_0lPVU1pM50f_289DSc6RXdKBmVc7UuhMosqagfoyjH4IW3fxWXtXnDgzJnp_3M-Lh69f7nffq5vbbz921zeVrblYKoSG9T23nQJWKyccSSuw6bBvpWikdYqA54o7YggGqQElBHQtR67IGn5eXGz37mP4teZx9eSTpXE0M4U1ackYF6hqmcnLjRzMSNrPLizR2Lx6mrwNMzmf-9dcSV4zpSALuAk2hpQiOb2PfjLxWSPoQ_Z6y17n7PUhe91m5-NxnLWbqH8x_oadgc9HwCRrRhfNbH36x3EJEusDxzYu5aN5oKgfwxrnHOV_X_-0Sc4EbYb8o_rhjgFyQMUajg3_A_CvpIU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>822361948</pqid></control><display><type>article</type><title>Comparison of the duplex-destabilizing effects of nucleobase-caged oligonucleotides</title><source>Springer Link</source><creator>Rodrigues-Correia, Alexandre ; Koeppel, Martin B ; Schäfer, Florian ; Joshi, K. B ; Mack, Timo ; Heckel, Alexander</creator><creatorcontrib>Rodrigues-Correia, Alexandre ; Koeppel, Martin B ; Schäfer, Florian ; Joshi, K. B ; Mack, Timo ; Heckel, Alexander</creatorcontrib><description>Nucleobase-caged oligonucleotide residues have photolabile “caging groups” that prevent the formation of Watson-Crick base pairs until the unmodified nucleobase is restored in a photolysis event. This principle can be used to put a growing variety of powerful nucleic acid-based applications under the precise spatiotemporal control using light as an addressing mechanism. Examples for applications include light control of transcription, RNAi, nucleic acid folding, primer extension, and restriction endonuclease as well as DNAzyme, aptamer, and antisense activity. However, a comparison of the duplex-destabilization properties of the various caged residues that have been used up to date and rules for achieving a maximal duplex destabilization with a minimum amount of modified residues are still missing. We present both a comparison of the duplex-destabilizing capabilities of various nucleobase-caged residues and address the question of influence on neighboring base pairs. [graphic removed]</description><identifier>ISSN: 1618-2642</identifier><identifier>EISSN: 1618-2650</identifier><identifier>DOI: 10.1007/s00216-010-4274-7</identifier><identifier>PMID: 20953770</identifier><language>eng</language><publisher>Berlin/Heidelberg: Berlin/Heidelberg : Springer-Verlag</publisher><subject>Analysis ; Analytical Chemistry ; Base Sequence ; Biochemistry ; Biological and medical sciences ; Caged compounds ; Characterization and Evaluation of Materials ; Chemical properties ; Chemistry ; Chemistry and Materials Science ; DNA duplex melting temperature ; DNA duplex stability ; Exact sciences and technology ; Food Science ; Fundamental and applied biological sciences. Psychology ; Irradiation ; Laboratory Medicine ; Measurement ; Melting points ; Methods ; Molecular and cellular biology ; Molecular genetics ; Molecular Sequence Data ; Monitoring/Environmental Analysis ; Nucleic Acid Conformation ; Nucleic acids ; Oligonucleotides ; Oligonucleotides - chemistry ; Optical properties ; Original Paper ; Physiological aspects ; Spectrum analysis ; Stability ; Structure ; Transcription. Transcription factor. Splicing. Rna processing ; Transition Temperature</subject><ispartof>Analytical and bioanalytical chemistry, 2011, Vol.399 (1), p.441-447</ispartof><rights>Springer-Verlag 2010</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2011 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-1052dd3cb90249f6fe8c615b1d78658cf9e038653fe210a1e509660b73139eca3</citedby><cites>FETCH-LOGICAL-c436t-1052dd3cb90249f6fe8c615b1d78658cf9e038653fe210a1e509660b73139eca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23808140$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20953770$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rodrigues-Correia, Alexandre</creatorcontrib><creatorcontrib>Koeppel, Martin B</creatorcontrib><creatorcontrib>Schäfer, Florian</creatorcontrib><creatorcontrib>Joshi, K. B</creatorcontrib><creatorcontrib>Mack, Timo</creatorcontrib><creatorcontrib>Heckel, Alexander</creatorcontrib><title>Comparison of the duplex-destabilizing effects of nucleobase-caged oligonucleotides</title><title>Analytical and bioanalytical chemistry</title><addtitle>Anal Bioanal Chem</addtitle><addtitle>Anal Bioanal Chem</addtitle><description>Nucleobase-caged oligonucleotide residues have photolabile “caging groups” that prevent the formation of Watson-Crick base pairs until the unmodified nucleobase is restored in a photolysis event. This principle can be used to put a growing variety of powerful nucleic acid-based applications under the precise spatiotemporal control using light as an addressing mechanism. Examples for applications include light control of transcription, RNAi, nucleic acid folding, primer extension, and restriction endonuclease as well as DNAzyme, aptamer, and antisense activity. However, a comparison of the duplex-destabilization properties of the various caged residues that have been used up to date and rules for achieving a maximal duplex destabilization with a minimum amount of modified residues are still missing. We present both a comparison of the duplex-destabilizing capabilities of various nucleobase-caged residues and address the question of influence on neighboring base pairs. [graphic removed]</description><subject>Analysis</subject><subject>Analytical Chemistry</subject><subject>Base Sequence</subject><subject>Biochemistry</subject><subject>Biological and medical sciences</subject><subject>Caged compounds</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical properties</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>DNA duplex melting temperature</subject><subject>DNA duplex stability</subject><subject>Exact sciences and technology</subject><subject>Food Science</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Irradiation</subject><subject>Laboratory Medicine</subject><subject>Measurement</subject><subject>Melting points</subject><subject>Methods</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Molecular Sequence Data</subject><subject>Monitoring/Environmental Analysis</subject><subject>Nucleic Acid Conformation</subject><subject>Nucleic acids</subject><subject>Oligonucleotides</subject><subject>Oligonucleotides - chemistry</subject><subject>Optical properties</subject><subject>Original Paper</subject><subject>Physiological aspects</subject><subject>Spectrum analysis</subject><subject>Stability</subject><subject>Structure</subject><subject>Transcription. Transcription factor. Splicing. Rna processing</subject><subject>Transition Temperature</subject><issn>1618-2642</issn><issn>1618-2650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u3SAQRq2qUZOmfYBuWm-qrJzMgI1hGV31T4qURZI1wnhwiWxzC7aU9OnLlW_TXcWC0XAOjD6K4gPCJQK0VwmAoagAoapZW1ftq-IMBcqKiQZev9Q1Oy3epvQIgI1E8aY4ZaAa3rZwVtztwrQ30acwl8GVy08q-3U_0lPVU1pM50f_289DSc6RXdKBmVc7UuhMosqagfoyjH4IW3fxWXtXnDgzJnp_3M-Lh69f7nffq5vbbz921zeVrblYKoSG9T23nQJWKyccSSuw6bBvpWikdYqA54o7YggGqQElBHQtR67IGn5eXGz37mP4teZx9eSTpXE0M4U1ackYF6hqmcnLjRzMSNrPLizR2Lx6mrwNMzmf-9dcSV4zpSALuAk2hpQiOb2PfjLxWSPoQ_Z6y17n7PUhe91m5-NxnLWbqH8x_oadgc9HwCRrRhfNbH36x3EJEusDxzYu5aN5oKgfwxrnHOV_X_-0Sc4EbYb8o_rhjgFyQMUajg3_A_CvpIU</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Rodrigues-Correia, Alexandre</creator><creator>Koeppel, Martin B</creator><creator>Schäfer, Florian</creator><creator>Joshi, K. B</creator><creator>Mack, Timo</creator><creator>Heckel, Alexander</creator><general>Berlin/Heidelberg : Springer-Verlag</general><general>Springer-Verlag</general><general>Springer</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>2011</creationdate><title>Comparison of the duplex-destabilizing effects of nucleobase-caged oligonucleotides</title><author>Rodrigues-Correia, Alexandre ; Koeppel, Martin B ; Schäfer, Florian ; Joshi, K. B ; Mack, Timo ; Heckel, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-1052dd3cb90249f6fe8c615b1d78658cf9e038653fe210a1e509660b73139eca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Analysis</topic><topic>Analytical Chemistry</topic><topic>Base Sequence</topic><topic>Biochemistry</topic><topic>Biological and medical sciences</topic><topic>Caged compounds</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical properties</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>DNA duplex melting temperature</topic><topic>DNA duplex stability</topic><topic>Exact sciences and technology</topic><topic>Food Science</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Irradiation</topic><topic>Laboratory Medicine</topic><topic>Measurement</topic><topic>Melting points</topic><topic>Methods</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Molecular Sequence Data</topic><topic>Monitoring/Environmental Analysis</topic><topic>Nucleic Acid Conformation</topic><topic>Nucleic acids</topic><topic>Oligonucleotides</topic><topic>Oligonucleotides - chemistry</topic><topic>Optical properties</topic><topic>Original Paper</topic><topic>Physiological aspects</topic><topic>Spectrum analysis</topic><topic>Stability</topic><topic>Structure</topic><topic>Transcription. Transcription factor. Splicing. Rna processing</topic><topic>Transition Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodrigues-Correia, Alexandre</creatorcontrib><creatorcontrib>Koeppel, Martin B</creatorcontrib><creatorcontrib>Schäfer, Florian</creatorcontrib><creatorcontrib>Joshi, K. B</creatorcontrib><creatorcontrib>Mack, Timo</creatorcontrib><creatorcontrib>Heckel, Alexander</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical and bioanalytical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodrigues-Correia, Alexandre</au><au>Koeppel, Martin B</au><au>Schäfer, Florian</au><au>Joshi, K. B</au><au>Mack, Timo</au><au>Heckel, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of the duplex-destabilizing effects of nucleobase-caged oligonucleotides</atitle><jtitle>Analytical and bioanalytical chemistry</jtitle><stitle>Anal Bioanal Chem</stitle><addtitle>Anal Bioanal Chem</addtitle><date>2011</date><risdate>2011</risdate><volume>399</volume><issue>1</issue><spage>441</spage><epage>447</epage><pages>441-447</pages><issn>1618-2642</issn><eissn>1618-2650</eissn><abstract>Nucleobase-caged oligonucleotide residues have photolabile “caging groups” that prevent the formation of Watson-Crick base pairs until the unmodified nucleobase is restored in a photolysis event. This principle can be used to put a growing variety of powerful nucleic acid-based applications under the precise spatiotemporal control using light as an addressing mechanism. Examples for applications include light control of transcription, RNAi, nucleic acid folding, primer extension, and restriction endonuclease as well as DNAzyme, aptamer, and antisense activity. However, a comparison of the duplex-destabilization properties of the various caged residues that have been used up to date and rules for achieving a maximal duplex destabilization with a minimum amount of modified residues are still missing. We present both a comparison of the duplex-destabilizing capabilities of various nucleobase-caged residues and address the question of influence on neighboring base pairs. [graphic removed]</abstract><cop>Berlin/Heidelberg</cop><pub>Berlin/Heidelberg : Springer-Verlag</pub><pmid>20953770</pmid><doi>10.1007/s00216-010-4274-7</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1618-2642
ispartof Analytical and bioanalytical chemistry, 2011, Vol.399 (1), p.441-447
issn 1618-2642
1618-2650
language eng
recordid cdi_proquest_miscellaneous_822361948
source Springer Link
subjects Analysis
Analytical Chemistry
Base Sequence
Biochemistry
Biological and medical sciences
Caged compounds
Characterization and Evaluation of Materials
Chemical properties
Chemistry
Chemistry and Materials Science
DNA duplex melting temperature
DNA duplex stability
Exact sciences and technology
Food Science
Fundamental and applied biological sciences. Psychology
Irradiation
Laboratory Medicine
Measurement
Melting points
Methods
Molecular and cellular biology
Molecular genetics
Molecular Sequence Data
Monitoring/Environmental Analysis
Nucleic Acid Conformation
Nucleic acids
Oligonucleotides
Oligonucleotides - chemistry
Optical properties
Original Paper
Physiological aspects
Spectrum analysis
Stability
Structure
Transcription. Transcription factor. Splicing. Rna processing
Transition Temperature
title Comparison of the duplex-destabilizing effects of nucleobase-caged oligonucleotides
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T08%3A04%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20the%20duplex-destabilizing%20effects%20of%20nucleobase-caged%20oligonucleotides&rft.jtitle=Analytical%20and%20bioanalytical%20chemistry&rft.au=Rodrigues-Correia,%20Alexandre&rft.date=2011&rft.volume=399&rft.issue=1&rft.spage=441&rft.epage=447&rft.pages=441-447&rft.issn=1618-2642&rft.eissn=1618-2650&rft_id=info:doi/10.1007/s00216-010-4274-7&rft_dat=%3Cgale_proqu%3EA398342990%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c436t-1052dd3cb90249f6fe8c615b1d78658cf9e038653fe210a1e509660b73139eca3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=822361948&rft_id=info:pmid/20953770&rft_galeid=A398342990&rfr_iscdi=true