Loading…
Trends in computational simulations of electrochemical processes under hydrodynamic flow in microchannels
Computational modeling and theoretical simulations have recently become important tools for the development, characterization, and validation of microfluidic devices. The recent proliferation of commercial user-friendly software has allowed researchers in the microfluidics community, who might not b...
Saved in:
Published in: | Analytical and bioanalytical chemistry 2011-01, Vol.399 (1), p.183-190 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Computational modeling and theoretical simulations have recently become important tools for the development, characterization, and validation of microfluidic devices. The recent proliferation of commercial user-friendly software has allowed researchers in the microfluidics community, who might not be familiar with computer programming or fluid mechanics, to acquire important information on microsystems used for sensors, velocimetry, detection for microchannel separations, and microfluidic fuel cells. We discuss the most popular computational technique for modeling these systems--the finite element method--and how it can be applied to model electrochemical processes coupled with hydrodynamic flow in microchannels. Furthermore, some of the limitations and challenges of these computational models are also discussed. [graphic removed] |
---|---|
ISSN: | 1618-2642 1618-2650 |
DOI: | 10.1007/s00216-010-4070-4 |