Loading…
Adenylyl cyclase 8 is central to glucagon-like peptide 1 signalling and effects of chronically elevated glucose in rat and human pancreatic beta cells
Aims/hypothesis Glucose and incretins regulate beta cell function, gene expression and insulin exocytosis via calcium and cAMP. Prolonged exposure to elevated glucose (also termed glucotoxicity) disturbs calcium homeostasis, but little is known about cAMP signalling. We therefore investigated long-t...
Saved in:
Published in: | Diabetologia 2011-02, Vol.54 (2), p.390-402 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c467t-df52032dd014a778ff870ae2702bd2d8a01f92af97e00ef5fc09548a8eef3ec23 |
---|---|
cites | cdi_FETCH-LOGICAL-c467t-df52032dd014a778ff870ae2702bd2d8a01f92af97e00ef5fc09548a8eef3ec23 |
container_end_page | 402 |
container_issue | 2 |
container_start_page | 390 |
container_title | Diabetologia |
container_volume | 54 |
creator | Roger, B Papin, J Vacher, P Raoux, M Mulot, A Dubois, M Kerr-Conte, J Voy, B. H Pattou, F Charpentier, G Jonas, J.-C Moustaïd-Moussa, N Lang, J |
description | Aims/hypothesis Glucose and incretins regulate beta cell function, gene expression and insulin exocytosis via calcium and cAMP. Prolonged exposure to elevated glucose (also termed glucotoxicity) disturbs calcium homeostasis, but little is known about cAMP signalling. We therefore investigated long-term effects of glucose on this pathway with special regard to the incretin glucagon-like peptide 1 (GLP-1). Methods We exposed INS-1E cells and rat or human islets to different levels of glucose for 3 days and determined functional responses in terms of second messengers (cAMP, Ca²⁺), transcription profiles, activation of cAMP-responsive element (CRE) and secretion by measuring membrane capacitance. Moreover, we modulated directly the abundance of a calcium-sensitive adenylyl cyclase (ADCY8) and GLP-1 receptor (GLP1R). Results GLP-1- or forskolin-mediated increases in cytosolic calcium, cAMP-levels or insulin secretion were largely reduced in INS-1E cells cultured at elevated glucose (>5.5 mmol/l). Statistical analysis of transcription profiles identified cAMP pathways as major targets regulated by glucose. Quantitative PCR confirmed these findings and unravelled marked downregulation of the calcium-sensitive adenylyl cyclase ADCY8 also in rat and in human islets. Re-expression of ADCY8, but not of the GLP1R, recovered GLP-1 signalling in glucotoxicity in INS-1E cells and in rat islets. Moreover, knockdown of this adenylyl cyclase showed that GLP-1-induced cAMP generation, calcium signalling, activation of the downstream target CRE and direct amplification of exocytosis by cAMP-raising agents (evaluated by capacitance measurement) proceeds via ADCY8. Conclusions/interpretation cAMP-mediated pathways are modelled by glucose, and downregulation of the calcium-sensitive ADCY8 plays a central role herein, including signalling via the GLP1R. |
doi_str_mv | 10.1007/s00125-010-1955-x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_822901991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>822901991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-df52032dd014a778ff870ae2702bd2d8a01f92af97e00ef5fc09548a8eef3ec23</originalsourceid><addsrcrecordid>eNp9ksFu1DAQhi0EotvCA3ABCwlxCoydeJMcqwoKUiUOUIlbNOuMUxevE-ykal6E58XZLFTiwMmy5vt_z8xvxl4IeCcAyvcRQEiVgYBM1Epl94_YRhS5zKCQ1WO2WcqZqLbfT9hpjLcAkKti-5SdSAHFNlfVhv06b8nPbnZcz9phJF5xG7kmPwZ0fOx55yaNXe8zZ38QH2gYbUtc8Gg7j85Z33H0LSdjSI-R94brm9B7q1Nx5uToDkdqDzZ9sreeBxwPkptpj54P6HUgHK3mOxoxPe1cfMaeGHSRnh_PM3b98cO3i0_Z1ZfLzxfnV5kutuWYtUZJyGXbgiiwLCtjqhKQZAly18q2QhCmlmjqkgDIKKOhVkWFFZHJScv8jL1dfYfQ_5wojs3exqUD9NRPsamkrEHUtUjk63_I234KaQMHqBSpjyJBYoV06GMMZJoh2D2GuRHQLJE1a2QNLPcUWXOfNC-PxtNuT-1fxZ-MEvDmCGBMSzUhLczGBy4v61KpZRa5cjGVfEfhocP_vf5qFRnsG-xCMr7-KkHkaWpZpN-S_wbME7mY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>822712034</pqid></control><display><type>article</type><title>Adenylyl cyclase 8 is central to glucagon-like peptide 1 signalling and effects of chronically elevated glucose in rat and human pancreatic beta cells</title><source>Springer Link</source><creator>Roger, B ; Papin, J ; Vacher, P ; Raoux, M ; Mulot, A ; Dubois, M ; Kerr-Conte, J ; Voy, B. H ; Pattou, F ; Charpentier, G ; Jonas, J.-C ; Moustaïd-Moussa, N ; Lang, J</creator><creatorcontrib>Roger, B ; Papin, J ; Vacher, P ; Raoux, M ; Mulot, A ; Dubois, M ; Kerr-Conte, J ; Voy, B. H ; Pattou, F ; Charpentier, G ; Jonas, J.-C ; Moustaïd-Moussa, N ; Lang, J</creatorcontrib><description>Aims/hypothesis Glucose and incretins regulate beta cell function, gene expression and insulin exocytosis via calcium and cAMP. Prolonged exposure to elevated glucose (also termed glucotoxicity) disturbs calcium homeostasis, but little is known about cAMP signalling. We therefore investigated long-term effects of glucose on this pathway with special regard to the incretin glucagon-like peptide 1 (GLP-1). Methods We exposed INS-1E cells and rat or human islets to different levels of glucose for 3 days and determined functional responses in terms of second messengers (cAMP, Ca²⁺), transcription profiles, activation of cAMP-responsive element (CRE) and secretion by measuring membrane capacitance. Moreover, we modulated directly the abundance of a calcium-sensitive adenylyl cyclase (ADCY8) and GLP-1 receptor (GLP1R). Results GLP-1- or forskolin-mediated increases in cytosolic calcium, cAMP-levels or insulin secretion were largely reduced in INS-1E cells cultured at elevated glucose (>5.5 mmol/l). Statistical analysis of transcription profiles identified cAMP pathways as major targets regulated by glucose. Quantitative PCR confirmed these findings and unravelled marked downregulation of the calcium-sensitive adenylyl cyclase ADCY8 also in rat and in human islets. Re-expression of ADCY8, but not of the GLP1R, recovered GLP-1 signalling in glucotoxicity in INS-1E cells and in rat islets. Moreover, knockdown of this adenylyl cyclase showed that GLP-1-induced cAMP generation, calcium signalling, activation of the downstream target CRE and direct amplification of exocytosis by cAMP-raising agents (evaluated by capacitance measurement) proceeds via ADCY8. Conclusions/interpretation cAMP-mediated pathways are modelled by glucose, and downregulation of the calcium-sensitive ADCY8 plays a central role herein, including signalling via the GLP1R.</description><identifier>ISSN: 0012-186X</identifier><identifier>EISSN: 1432-0428</identifier><identifier>DOI: 10.1007/s00125-010-1955-x</identifier><identifier>PMID: 21046358</identifier><language>eng</language><publisher>Berlin/Heidelberg: Berlin/Heidelberg : Springer-Verlag</publisher><subject>ADCY8 ; adenylate cyclase ; Adenylyl Cyclases - genetics ; Adenylyl Cyclases - metabolism ; Animals ; Biological and medical sciences ; calcium ; Calcium - metabolism ; Cell Line ; Cells, Cultured ; Colforsin - pharmacology ; CRE ; cyclic AMP ; Cyclic AMP - metabolism ; Cytophotometry ; Diabetes ; Diabetes. Impaired glucose tolerance ; Electrophysiology ; Endocrine pancreas. Apud cells (diseases) ; Endocrinopathies ; Etiopathogenesis. Screening. Investigations. Target tissue resistance ; exocytosis ; Gene expression ; GLP-1 ; Glucagon ; Glucagon-Like Peptide 1 - pharmacology ; Glucagon-Like Peptide-1 Receptor ; Glucose ; Glucose - pharmacology ; Glucotoxicity ; Growth factors ; Homeostasis ; Human Physiology ; Humans ; Incretins ; Insulin ; Insulin-Secreting Cells - drug effects ; Insulin-Secreting Cells - enzymology ; Insulin-Secreting Cells - metabolism ; Internal Medicine ; Islets ; Kinases ; Medical sciences ; Medicine ; Medicine & Public Health ; Metabolic Diseases ; Models, Biological ; Oligonucleotide Array Sequence Analysis ; Peptides ; Physiology ; Plasmids ; Polymerase Chain Reaction ; Proteins ; Rats ; Receptors, Glucagon - genetics ; Receptors, Glucagon - metabolism ; Signal transduction</subject><ispartof>Diabetologia, 2011-02, Vol.54 (2), p.390-402</ispartof><rights>Springer-Verlag 2010</rights><rights>2015 INIST-CNRS</rights><rights>Springer-Verlag 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-df52032dd014a778ff870ae2702bd2d8a01f92af97e00ef5fc09548a8eef3ec23</citedby><cites>FETCH-LOGICAL-c467t-df52032dd014a778ff870ae2702bd2d8a01f92af97e00ef5fc09548a8eef3ec23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23797552$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21046358$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Roger, B</creatorcontrib><creatorcontrib>Papin, J</creatorcontrib><creatorcontrib>Vacher, P</creatorcontrib><creatorcontrib>Raoux, M</creatorcontrib><creatorcontrib>Mulot, A</creatorcontrib><creatorcontrib>Dubois, M</creatorcontrib><creatorcontrib>Kerr-Conte, J</creatorcontrib><creatorcontrib>Voy, B. H</creatorcontrib><creatorcontrib>Pattou, F</creatorcontrib><creatorcontrib>Charpentier, G</creatorcontrib><creatorcontrib>Jonas, J.-C</creatorcontrib><creatorcontrib>Moustaïd-Moussa, N</creatorcontrib><creatorcontrib>Lang, J</creatorcontrib><title>Adenylyl cyclase 8 is central to glucagon-like peptide 1 signalling and effects of chronically elevated glucose in rat and human pancreatic beta cells</title><title>Diabetologia</title><addtitle>Diabetologia</addtitle><addtitle>Diabetologia</addtitle><description>Aims/hypothesis Glucose and incretins regulate beta cell function, gene expression and insulin exocytosis via calcium and cAMP. Prolonged exposure to elevated glucose (also termed glucotoxicity) disturbs calcium homeostasis, but little is known about cAMP signalling. We therefore investigated long-term effects of glucose on this pathway with special regard to the incretin glucagon-like peptide 1 (GLP-1). Methods We exposed INS-1E cells and rat or human islets to different levels of glucose for 3 days and determined functional responses in terms of second messengers (cAMP, Ca²⁺), transcription profiles, activation of cAMP-responsive element (CRE) and secretion by measuring membrane capacitance. Moreover, we modulated directly the abundance of a calcium-sensitive adenylyl cyclase (ADCY8) and GLP-1 receptor (GLP1R). Results GLP-1- or forskolin-mediated increases in cytosolic calcium, cAMP-levels or insulin secretion were largely reduced in INS-1E cells cultured at elevated glucose (>5.5 mmol/l). Statistical analysis of transcription profiles identified cAMP pathways as major targets regulated by glucose. Quantitative PCR confirmed these findings and unravelled marked downregulation of the calcium-sensitive adenylyl cyclase ADCY8 also in rat and in human islets. Re-expression of ADCY8, but not of the GLP1R, recovered GLP-1 signalling in glucotoxicity in INS-1E cells and in rat islets. Moreover, knockdown of this adenylyl cyclase showed that GLP-1-induced cAMP generation, calcium signalling, activation of the downstream target CRE and direct amplification of exocytosis by cAMP-raising agents (evaluated by capacitance measurement) proceeds via ADCY8. Conclusions/interpretation cAMP-mediated pathways are modelled by glucose, and downregulation of the calcium-sensitive ADCY8 plays a central role herein, including signalling via the GLP1R.</description><subject>ADCY8</subject><subject>adenylate cyclase</subject><subject>Adenylyl Cyclases - genetics</subject><subject>Adenylyl Cyclases - metabolism</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>calcium</subject><subject>Calcium - metabolism</subject><subject>Cell Line</subject><subject>Cells, Cultured</subject><subject>Colforsin - pharmacology</subject><subject>CRE</subject><subject>cyclic AMP</subject><subject>Cyclic AMP - metabolism</subject><subject>Cytophotometry</subject><subject>Diabetes</subject><subject>Diabetes. Impaired glucose tolerance</subject><subject>Electrophysiology</subject><subject>Endocrine pancreas. Apud cells (diseases)</subject><subject>Endocrinopathies</subject><subject>Etiopathogenesis. Screening. Investigations. Target tissue resistance</subject><subject>exocytosis</subject><subject>Gene expression</subject><subject>GLP-1</subject><subject>Glucagon</subject><subject>Glucagon-Like Peptide 1 - pharmacology</subject><subject>Glucagon-Like Peptide-1 Receptor</subject><subject>Glucose</subject><subject>Glucose - pharmacology</subject><subject>Glucotoxicity</subject><subject>Growth factors</subject><subject>Homeostasis</subject><subject>Human Physiology</subject><subject>Humans</subject><subject>Incretins</subject><subject>Insulin</subject><subject>Insulin-Secreting Cells - drug effects</subject><subject>Insulin-Secreting Cells - enzymology</subject><subject>Insulin-Secreting Cells - metabolism</subject><subject>Internal Medicine</subject><subject>Islets</subject><subject>Kinases</subject><subject>Medical sciences</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Metabolic Diseases</subject><subject>Models, Biological</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Peptides</subject><subject>Physiology</subject><subject>Plasmids</subject><subject>Polymerase Chain Reaction</subject><subject>Proteins</subject><subject>Rats</subject><subject>Receptors, Glucagon - genetics</subject><subject>Receptors, Glucagon - metabolism</subject><subject>Signal transduction</subject><issn>0012-186X</issn><issn>1432-0428</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9ksFu1DAQhi0EotvCA3ABCwlxCoydeJMcqwoKUiUOUIlbNOuMUxevE-ykal6E58XZLFTiwMmy5vt_z8xvxl4IeCcAyvcRQEiVgYBM1Epl94_YRhS5zKCQ1WO2WcqZqLbfT9hpjLcAkKti-5SdSAHFNlfVhv06b8nPbnZcz9phJF5xG7kmPwZ0fOx55yaNXe8zZ38QH2gYbUtc8Gg7j85Z33H0LSdjSI-R94brm9B7q1Nx5uToDkdqDzZ9sreeBxwPkptpj54P6HUgHK3mOxoxPe1cfMaeGHSRnh_PM3b98cO3i0_Z1ZfLzxfnV5kutuWYtUZJyGXbgiiwLCtjqhKQZAly18q2QhCmlmjqkgDIKKOhVkWFFZHJScv8jL1dfYfQ_5wojs3exqUD9NRPsamkrEHUtUjk63_I234KaQMHqBSpjyJBYoV06GMMZJoh2D2GuRHQLJE1a2QNLPcUWXOfNC-PxtNuT-1fxZ-MEvDmCGBMSzUhLczGBy4v61KpZRa5cjGVfEfhocP_vf5qFRnsG-xCMr7-KkHkaWpZpN-S_wbME7mY</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Roger, B</creator><creator>Papin, J</creator><creator>Vacher, P</creator><creator>Raoux, M</creator><creator>Mulot, A</creator><creator>Dubois, M</creator><creator>Kerr-Conte, J</creator><creator>Voy, B. H</creator><creator>Pattou, F</creator><creator>Charpentier, G</creator><creator>Jonas, J.-C</creator><creator>Moustaïd-Moussa, N</creator><creator>Lang, J</creator><general>Berlin/Heidelberg : Springer-Verlag</general><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H94</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope></search><sort><creationdate>20110201</creationdate><title>Adenylyl cyclase 8 is central to glucagon-like peptide 1 signalling and effects of chronically elevated glucose in rat and human pancreatic beta cells</title><author>Roger, B ; Papin, J ; Vacher, P ; Raoux, M ; Mulot, A ; Dubois, M ; Kerr-Conte, J ; Voy, B. H ; Pattou, F ; Charpentier, G ; Jonas, J.-C ; Moustaïd-Moussa, N ; Lang, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-df52032dd014a778ff870ae2702bd2d8a01f92af97e00ef5fc09548a8eef3ec23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>ADCY8</topic><topic>adenylate cyclase</topic><topic>Adenylyl Cyclases - genetics</topic><topic>Adenylyl Cyclases - metabolism</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>calcium</topic><topic>Calcium - metabolism</topic><topic>Cell Line</topic><topic>Cells, Cultured</topic><topic>Colforsin - pharmacology</topic><topic>CRE</topic><topic>cyclic AMP</topic><topic>Cyclic AMP - metabolism</topic><topic>Cytophotometry</topic><topic>Diabetes</topic><topic>Diabetes. Impaired glucose tolerance</topic><topic>Electrophysiology</topic><topic>Endocrine pancreas. Apud cells (diseases)</topic><topic>Endocrinopathies</topic><topic>Etiopathogenesis. Screening. Investigations. Target tissue resistance</topic><topic>exocytosis</topic><topic>Gene expression</topic><topic>GLP-1</topic><topic>Glucagon</topic><topic>Glucagon-Like Peptide 1 - pharmacology</topic><topic>Glucagon-Like Peptide-1 Receptor</topic><topic>Glucose</topic><topic>Glucose - pharmacology</topic><topic>Glucotoxicity</topic><topic>Growth factors</topic><topic>Homeostasis</topic><topic>Human Physiology</topic><topic>Humans</topic><topic>Incretins</topic><topic>Insulin</topic><topic>Insulin-Secreting Cells - drug effects</topic><topic>Insulin-Secreting Cells - enzymology</topic><topic>Insulin-Secreting Cells - metabolism</topic><topic>Internal Medicine</topic><topic>Islets</topic><topic>Kinases</topic><topic>Medical sciences</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Metabolic Diseases</topic><topic>Models, Biological</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Peptides</topic><topic>Physiology</topic><topic>Plasmids</topic><topic>Polymerase Chain Reaction</topic><topic>Proteins</topic><topic>Rats</topic><topic>Receptors, Glucagon - genetics</topic><topic>Receptors, Glucagon - metabolism</topic><topic>Signal transduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roger, B</creatorcontrib><creatorcontrib>Papin, J</creatorcontrib><creatorcontrib>Vacher, P</creatorcontrib><creatorcontrib>Raoux, M</creatorcontrib><creatorcontrib>Mulot, A</creatorcontrib><creatorcontrib>Dubois, M</creatorcontrib><creatorcontrib>Kerr-Conte, J</creatorcontrib><creatorcontrib>Voy, B. H</creatorcontrib><creatorcontrib>Pattou, F</creatorcontrib><creatorcontrib>Charpentier, G</creatorcontrib><creatorcontrib>Jonas, J.-C</creatorcontrib><creatorcontrib>Moustaïd-Moussa, N</creatorcontrib><creatorcontrib>Lang, J</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Diabetologia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roger, B</au><au>Papin, J</au><au>Vacher, P</au><au>Raoux, M</au><au>Mulot, A</au><au>Dubois, M</au><au>Kerr-Conte, J</au><au>Voy, B. H</au><au>Pattou, F</au><au>Charpentier, G</au><au>Jonas, J.-C</au><au>Moustaïd-Moussa, N</au><au>Lang, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adenylyl cyclase 8 is central to glucagon-like peptide 1 signalling and effects of chronically elevated glucose in rat and human pancreatic beta cells</atitle><jtitle>Diabetologia</jtitle><stitle>Diabetologia</stitle><addtitle>Diabetologia</addtitle><date>2011-02-01</date><risdate>2011</risdate><volume>54</volume><issue>2</issue><spage>390</spage><epage>402</epage><pages>390-402</pages><issn>0012-186X</issn><eissn>1432-0428</eissn><abstract>Aims/hypothesis Glucose and incretins regulate beta cell function, gene expression and insulin exocytosis via calcium and cAMP. Prolonged exposure to elevated glucose (also termed glucotoxicity) disturbs calcium homeostasis, but little is known about cAMP signalling. We therefore investigated long-term effects of glucose on this pathway with special regard to the incretin glucagon-like peptide 1 (GLP-1). Methods We exposed INS-1E cells and rat or human islets to different levels of glucose for 3 days and determined functional responses in terms of second messengers (cAMP, Ca²⁺), transcription profiles, activation of cAMP-responsive element (CRE) and secretion by measuring membrane capacitance. Moreover, we modulated directly the abundance of a calcium-sensitive adenylyl cyclase (ADCY8) and GLP-1 receptor (GLP1R). Results GLP-1- or forskolin-mediated increases in cytosolic calcium, cAMP-levels or insulin secretion were largely reduced in INS-1E cells cultured at elevated glucose (>5.5 mmol/l). Statistical analysis of transcription profiles identified cAMP pathways as major targets regulated by glucose. Quantitative PCR confirmed these findings and unravelled marked downregulation of the calcium-sensitive adenylyl cyclase ADCY8 also in rat and in human islets. Re-expression of ADCY8, but not of the GLP1R, recovered GLP-1 signalling in glucotoxicity in INS-1E cells and in rat islets. Moreover, knockdown of this adenylyl cyclase showed that GLP-1-induced cAMP generation, calcium signalling, activation of the downstream target CRE and direct amplification of exocytosis by cAMP-raising agents (evaluated by capacitance measurement) proceeds via ADCY8. Conclusions/interpretation cAMP-mediated pathways are modelled by glucose, and downregulation of the calcium-sensitive ADCY8 plays a central role herein, including signalling via the GLP1R.</abstract><cop>Berlin/Heidelberg</cop><pub>Berlin/Heidelberg : Springer-Verlag</pub><pmid>21046358</pmid><doi>10.1007/s00125-010-1955-x</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-186X |
ispartof | Diabetologia, 2011-02, Vol.54 (2), p.390-402 |
issn | 0012-186X 1432-0428 |
language | eng |
recordid | cdi_proquest_miscellaneous_822901991 |
source | Springer Link |
subjects | ADCY8 adenylate cyclase Adenylyl Cyclases - genetics Adenylyl Cyclases - metabolism Animals Biological and medical sciences calcium Calcium - metabolism Cell Line Cells, Cultured Colforsin - pharmacology CRE cyclic AMP Cyclic AMP - metabolism Cytophotometry Diabetes Diabetes. Impaired glucose tolerance Electrophysiology Endocrine pancreas. Apud cells (diseases) Endocrinopathies Etiopathogenesis. Screening. Investigations. Target tissue resistance exocytosis Gene expression GLP-1 Glucagon Glucagon-Like Peptide 1 - pharmacology Glucagon-Like Peptide-1 Receptor Glucose Glucose - pharmacology Glucotoxicity Growth factors Homeostasis Human Physiology Humans Incretins Insulin Insulin-Secreting Cells - drug effects Insulin-Secreting Cells - enzymology Insulin-Secreting Cells - metabolism Internal Medicine Islets Kinases Medical sciences Medicine Medicine & Public Health Metabolic Diseases Models, Biological Oligonucleotide Array Sequence Analysis Peptides Physiology Plasmids Polymerase Chain Reaction Proteins Rats Receptors, Glucagon - genetics Receptors, Glucagon - metabolism Signal transduction |
title | Adenylyl cyclase 8 is central to glucagon-like peptide 1 signalling and effects of chronically elevated glucose in rat and human pancreatic beta cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T05%3A18%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adenylyl%20cyclase%208%20is%20central%20to%20glucagon-like%20peptide%201%20signalling%20and%20effects%20of%20chronically%20elevated%20glucose%20in%20rat%20and%20human%20pancreatic%20beta%20cells&rft.jtitle=Diabetologia&rft.au=Roger,%20B&rft.date=2011-02-01&rft.volume=54&rft.issue=2&rft.spage=390&rft.epage=402&rft.pages=390-402&rft.issn=0012-186X&rft.eissn=1432-0428&rft_id=info:doi/10.1007/s00125-010-1955-x&rft_dat=%3Cproquest_cross%3E822901991%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c467t-df52032dd014a778ff870ae2702bd2d8a01f92af97e00ef5fc09548a8eef3ec23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=822712034&rft_id=info:pmid/21046358&rfr_iscdi=true |