Loading…

Adenylyl cyclase 8 is central to glucagon-like peptide 1 signalling and effects of chronically elevated glucose in rat and human pancreatic beta cells

Aims/hypothesis Glucose and incretins regulate beta cell function, gene expression and insulin exocytosis via calcium and cAMP. Prolonged exposure to elevated glucose (also termed glucotoxicity) disturbs calcium homeostasis, but little is known about cAMP signalling. We therefore investigated long-t...

Full description

Saved in:
Bibliographic Details
Published in:Diabetologia 2011-02, Vol.54 (2), p.390-402
Main Authors: Roger, B, Papin, J, Vacher, P, Raoux, M, Mulot, A, Dubois, M, Kerr-Conte, J, Voy, B. H, Pattou, F, Charpentier, G, Jonas, J.-C, Moustaïd-Moussa, N, Lang, J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c467t-df52032dd014a778ff870ae2702bd2d8a01f92af97e00ef5fc09548a8eef3ec23
cites cdi_FETCH-LOGICAL-c467t-df52032dd014a778ff870ae2702bd2d8a01f92af97e00ef5fc09548a8eef3ec23
container_end_page 402
container_issue 2
container_start_page 390
container_title Diabetologia
container_volume 54
creator Roger, B
Papin, J
Vacher, P
Raoux, M
Mulot, A
Dubois, M
Kerr-Conte, J
Voy, B. H
Pattou, F
Charpentier, G
Jonas, J.-C
Moustaïd-Moussa, N
Lang, J
description Aims/hypothesis Glucose and incretins regulate beta cell function, gene expression and insulin exocytosis via calcium and cAMP. Prolonged exposure to elevated glucose (also termed glucotoxicity) disturbs calcium homeostasis, but little is known about cAMP signalling. We therefore investigated long-term effects of glucose on this pathway with special regard to the incretin glucagon-like peptide 1 (GLP-1). Methods We exposed INS-1E cells and rat or human islets to different levels of glucose for 3 days and determined functional responses in terms of second messengers (cAMP, Ca²⁺), transcription profiles, activation of cAMP-responsive element (CRE) and secretion by measuring membrane capacitance. Moreover, we modulated directly the abundance of a calcium-sensitive adenylyl cyclase (ADCY8) and GLP-1 receptor (GLP1R). Results GLP-1- or forskolin-mediated increases in cytosolic calcium, cAMP-levels or insulin secretion were largely reduced in INS-1E cells cultured at elevated glucose (>5.5 mmol/l). Statistical analysis of transcription profiles identified cAMP pathways as major targets regulated by glucose. Quantitative PCR confirmed these findings and unravelled marked downregulation of the calcium-sensitive adenylyl cyclase ADCY8 also in rat and in human islets. Re-expression of ADCY8, but not of the GLP1R, recovered GLP-1 signalling in glucotoxicity in INS-1E cells and in rat islets. Moreover, knockdown of this adenylyl cyclase showed that GLP-1-induced cAMP generation, calcium signalling, activation of the downstream target CRE and direct amplification of exocytosis by cAMP-raising agents (evaluated by capacitance measurement) proceeds via ADCY8. Conclusions/interpretation cAMP-mediated pathways are modelled by glucose, and downregulation of the calcium-sensitive ADCY8 plays a central role herein, including signalling via the GLP1R.
doi_str_mv 10.1007/s00125-010-1955-x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_822901991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>822901991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-df52032dd014a778ff870ae2702bd2d8a01f92af97e00ef5fc09548a8eef3ec23</originalsourceid><addsrcrecordid>eNp9ksFu1DAQhi0EotvCA3ABCwlxCoydeJMcqwoKUiUOUIlbNOuMUxevE-ykal6E58XZLFTiwMmy5vt_z8xvxl4IeCcAyvcRQEiVgYBM1Epl94_YRhS5zKCQ1WO2WcqZqLbfT9hpjLcAkKti-5SdSAHFNlfVhv06b8nPbnZcz9phJF5xG7kmPwZ0fOx55yaNXe8zZ38QH2gYbUtc8Gg7j85Z33H0LSdjSI-R94brm9B7q1Nx5uToDkdqDzZ9sreeBxwPkptpj54P6HUgHK3mOxoxPe1cfMaeGHSRnh_PM3b98cO3i0_Z1ZfLzxfnV5kutuWYtUZJyGXbgiiwLCtjqhKQZAly18q2QhCmlmjqkgDIKKOhVkWFFZHJScv8jL1dfYfQ_5wojs3exqUD9NRPsamkrEHUtUjk63_I234KaQMHqBSpjyJBYoV06GMMZJoh2D2GuRHQLJE1a2QNLPcUWXOfNC-PxtNuT-1fxZ-MEvDmCGBMSzUhLczGBy4v61KpZRa5cjGVfEfhocP_vf5qFRnsG-xCMr7-KkHkaWpZpN-S_wbME7mY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>822712034</pqid></control><display><type>article</type><title>Adenylyl cyclase 8 is central to glucagon-like peptide 1 signalling and effects of chronically elevated glucose in rat and human pancreatic beta cells</title><source>Springer Link</source><creator>Roger, B ; Papin, J ; Vacher, P ; Raoux, M ; Mulot, A ; Dubois, M ; Kerr-Conte, J ; Voy, B. H ; Pattou, F ; Charpentier, G ; Jonas, J.-C ; Moustaïd-Moussa, N ; Lang, J</creator><creatorcontrib>Roger, B ; Papin, J ; Vacher, P ; Raoux, M ; Mulot, A ; Dubois, M ; Kerr-Conte, J ; Voy, B. H ; Pattou, F ; Charpentier, G ; Jonas, J.-C ; Moustaïd-Moussa, N ; Lang, J</creatorcontrib><description>Aims/hypothesis Glucose and incretins regulate beta cell function, gene expression and insulin exocytosis via calcium and cAMP. Prolonged exposure to elevated glucose (also termed glucotoxicity) disturbs calcium homeostasis, but little is known about cAMP signalling. We therefore investigated long-term effects of glucose on this pathway with special regard to the incretin glucagon-like peptide 1 (GLP-1). Methods We exposed INS-1E cells and rat or human islets to different levels of glucose for 3 days and determined functional responses in terms of second messengers (cAMP, Ca²⁺), transcription profiles, activation of cAMP-responsive element (CRE) and secretion by measuring membrane capacitance. Moreover, we modulated directly the abundance of a calcium-sensitive adenylyl cyclase (ADCY8) and GLP-1 receptor (GLP1R). Results GLP-1- or forskolin-mediated increases in cytosolic calcium, cAMP-levels or insulin secretion were largely reduced in INS-1E cells cultured at elevated glucose (&gt;5.5 mmol/l). Statistical analysis of transcription profiles identified cAMP pathways as major targets regulated by glucose. Quantitative PCR confirmed these findings and unravelled marked downregulation of the calcium-sensitive adenylyl cyclase ADCY8 also in rat and in human islets. Re-expression of ADCY8, but not of the GLP1R, recovered GLP-1 signalling in glucotoxicity in INS-1E cells and in rat islets. Moreover, knockdown of this adenylyl cyclase showed that GLP-1-induced cAMP generation, calcium signalling, activation of the downstream target CRE and direct amplification of exocytosis by cAMP-raising agents (evaluated by capacitance measurement) proceeds via ADCY8. Conclusions/interpretation cAMP-mediated pathways are modelled by glucose, and downregulation of the calcium-sensitive ADCY8 plays a central role herein, including signalling via the GLP1R.</description><identifier>ISSN: 0012-186X</identifier><identifier>EISSN: 1432-0428</identifier><identifier>DOI: 10.1007/s00125-010-1955-x</identifier><identifier>PMID: 21046358</identifier><language>eng</language><publisher>Berlin/Heidelberg: Berlin/Heidelberg : Springer-Verlag</publisher><subject>ADCY8 ; adenylate cyclase ; Adenylyl Cyclases - genetics ; Adenylyl Cyclases - metabolism ; Animals ; Biological and medical sciences ; calcium ; Calcium - metabolism ; Cell Line ; Cells, Cultured ; Colforsin - pharmacology ; CRE ; cyclic AMP ; Cyclic AMP - metabolism ; Cytophotometry ; Diabetes ; Diabetes. Impaired glucose tolerance ; Electrophysiology ; Endocrine pancreas. Apud cells (diseases) ; Endocrinopathies ; Etiopathogenesis. Screening. Investigations. Target tissue resistance ; exocytosis ; Gene expression ; GLP-1 ; Glucagon ; Glucagon-Like Peptide 1 - pharmacology ; Glucagon-Like Peptide-1 Receptor ; Glucose ; Glucose - pharmacology ; Glucotoxicity ; Growth factors ; Homeostasis ; Human Physiology ; Humans ; Incretins ; Insulin ; Insulin-Secreting Cells - drug effects ; Insulin-Secreting Cells - enzymology ; Insulin-Secreting Cells - metabolism ; Internal Medicine ; Islets ; Kinases ; Medical sciences ; Medicine ; Medicine &amp; Public Health ; Metabolic Diseases ; Models, Biological ; Oligonucleotide Array Sequence Analysis ; Peptides ; Physiology ; Plasmids ; Polymerase Chain Reaction ; Proteins ; Rats ; Receptors, Glucagon - genetics ; Receptors, Glucagon - metabolism ; Signal transduction</subject><ispartof>Diabetologia, 2011-02, Vol.54 (2), p.390-402</ispartof><rights>Springer-Verlag 2010</rights><rights>2015 INIST-CNRS</rights><rights>Springer-Verlag 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-df52032dd014a778ff870ae2702bd2d8a01f92af97e00ef5fc09548a8eef3ec23</citedby><cites>FETCH-LOGICAL-c467t-df52032dd014a778ff870ae2702bd2d8a01f92af97e00ef5fc09548a8eef3ec23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23797552$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21046358$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Roger, B</creatorcontrib><creatorcontrib>Papin, J</creatorcontrib><creatorcontrib>Vacher, P</creatorcontrib><creatorcontrib>Raoux, M</creatorcontrib><creatorcontrib>Mulot, A</creatorcontrib><creatorcontrib>Dubois, M</creatorcontrib><creatorcontrib>Kerr-Conte, J</creatorcontrib><creatorcontrib>Voy, B. H</creatorcontrib><creatorcontrib>Pattou, F</creatorcontrib><creatorcontrib>Charpentier, G</creatorcontrib><creatorcontrib>Jonas, J.-C</creatorcontrib><creatorcontrib>Moustaïd-Moussa, N</creatorcontrib><creatorcontrib>Lang, J</creatorcontrib><title>Adenylyl cyclase 8 is central to glucagon-like peptide 1 signalling and effects of chronically elevated glucose in rat and human pancreatic beta cells</title><title>Diabetologia</title><addtitle>Diabetologia</addtitle><addtitle>Diabetologia</addtitle><description>Aims/hypothesis Glucose and incretins regulate beta cell function, gene expression and insulin exocytosis via calcium and cAMP. Prolonged exposure to elevated glucose (also termed glucotoxicity) disturbs calcium homeostasis, but little is known about cAMP signalling. We therefore investigated long-term effects of glucose on this pathway with special regard to the incretin glucagon-like peptide 1 (GLP-1). Methods We exposed INS-1E cells and rat or human islets to different levels of glucose for 3 days and determined functional responses in terms of second messengers (cAMP, Ca²⁺), transcription profiles, activation of cAMP-responsive element (CRE) and secretion by measuring membrane capacitance. Moreover, we modulated directly the abundance of a calcium-sensitive adenylyl cyclase (ADCY8) and GLP-1 receptor (GLP1R). Results GLP-1- or forskolin-mediated increases in cytosolic calcium, cAMP-levels or insulin secretion were largely reduced in INS-1E cells cultured at elevated glucose (&gt;5.5 mmol/l). Statistical analysis of transcription profiles identified cAMP pathways as major targets regulated by glucose. Quantitative PCR confirmed these findings and unravelled marked downregulation of the calcium-sensitive adenylyl cyclase ADCY8 also in rat and in human islets. Re-expression of ADCY8, but not of the GLP1R, recovered GLP-1 signalling in glucotoxicity in INS-1E cells and in rat islets. Moreover, knockdown of this adenylyl cyclase showed that GLP-1-induced cAMP generation, calcium signalling, activation of the downstream target CRE and direct amplification of exocytosis by cAMP-raising agents (evaluated by capacitance measurement) proceeds via ADCY8. Conclusions/interpretation cAMP-mediated pathways are modelled by glucose, and downregulation of the calcium-sensitive ADCY8 plays a central role herein, including signalling via the GLP1R.</description><subject>ADCY8</subject><subject>adenylate cyclase</subject><subject>Adenylyl Cyclases - genetics</subject><subject>Adenylyl Cyclases - metabolism</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>calcium</subject><subject>Calcium - metabolism</subject><subject>Cell Line</subject><subject>Cells, Cultured</subject><subject>Colforsin - pharmacology</subject><subject>CRE</subject><subject>cyclic AMP</subject><subject>Cyclic AMP - metabolism</subject><subject>Cytophotometry</subject><subject>Diabetes</subject><subject>Diabetes. Impaired glucose tolerance</subject><subject>Electrophysiology</subject><subject>Endocrine pancreas. Apud cells (diseases)</subject><subject>Endocrinopathies</subject><subject>Etiopathogenesis. Screening. Investigations. Target tissue resistance</subject><subject>exocytosis</subject><subject>Gene expression</subject><subject>GLP-1</subject><subject>Glucagon</subject><subject>Glucagon-Like Peptide 1 - pharmacology</subject><subject>Glucagon-Like Peptide-1 Receptor</subject><subject>Glucose</subject><subject>Glucose - pharmacology</subject><subject>Glucotoxicity</subject><subject>Growth factors</subject><subject>Homeostasis</subject><subject>Human Physiology</subject><subject>Humans</subject><subject>Incretins</subject><subject>Insulin</subject><subject>Insulin-Secreting Cells - drug effects</subject><subject>Insulin-Secreting Cells - enzymology</subject><subject>Insulin-Secreting Cells - metabolism</subject><subject>Internal Medicine</subject><subject>Islets</subject><subject>Kinases</subject><subject>Medical sciences</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Metabolic Diseases</subject><subject>Models, Biological</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Peptides</subject><subject>Physiology</subject><subject>Plasmids</subject><subject>Polymerase Chain Reaction</subject><subject>Proteins</subject><subject>Rats</subject><subject>Receptors, Glucagon - genetics</subject><subject>Receptors, Glucagon - metabolism</subject><subject>Signal transduction</subject><issn>0012-186X</issn><issn>1432-0428</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9ksFu1DAQhi0EotvCA3ABCwlxCoydeJMcqwoKUiUOUIlbNOuMUxevE-ykal6E58XZLFTiwMmy5vt_z8xvxl4IeCcAyvcRQEiVgYBM1Epl94_YRhS5zKCQ1WO2WcqZqLbfT9hpjLcAkKti-5SdSAHFNlfVhv06b8nPbnZcz9phJF5xG7kmPwZ0fOx55yaNXe8zZ38QH2gYbUtc8Gg7j85Z33H0LSdjSI-R94brm9B7q1Nx5uToDkdqDzZ9sreeBxwPkptpj54P6HUgHK3mOxoxPe1cfMaeGHSRnh_PM3b98cO3i0_Z1ZfLzxfnV5kutuWYtUZJyGXbgiiwLCtjqhKQZAly18q2QhCmlmjqkgDIKKOhVkWFFZHJScv8jL1dfYfQ_5wojs3exqUD9NRPsamkrEHUtUjk63_I234KaQMHqBSpjyJBYoV06GMMZJoh2D2GuRHQLJE1a2QNLPcUWXOfNC-PxtNuT-1fxZ-MEvDmCGBMSzUhLczGBy4v61KpZRa5cjGVfEfhocP_vf5qFRnsG-xCMr7-KkHkaWpZpN-S_wbME7mY</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Roger, B</creator><creator>Papin, J</creator><creator>Vacher, P</creator><creator>Raoux, M</creator><creator>Mulot, A</creator><creator>Dubois, M</creator><creator>Kerr-Conte, J</creator><creator>Voy, B. H</creator><creator>Pattou, F</creator><creator>Charpentier, G</creator><creator>Jonas, J.-C</creator><creator>Moustaïd-Moussa, N</creator><creator>Lang, J</creator><general>Berlin/Heidelberg : Springer-Verlag</general><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H94</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope></search><sort><creationdate>20110201</creationdate><title>Adenylyl cyclase 8 is central to glucagon-like peptide 1 signalling and effects of chronically elevated glucose in rat and human pancreatic beta cells</title><author>Roger, B ; Papin, J ; Vacher, P ; Raoux, M ; Mulot, A ; Dubois, M ; Kerr-Conte, J ; Voy, B. H ; Pattou, F ; Charpentier, G ; Jonas, J.-C ; Moustaïd-Moussa, N ; Lang, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-df52032dd014a778ff870ae2702bd2d8a01f92af97e00ef5fc09548a8eef3ec23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>ADCY8</topic><topic>adenylate cyclase</topic><topic>Adenylyl Cyclases - genetics</topic><topic>Adenylyl Cyclases - metabolism</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>calcium</topic><topic>Calcium - metabolism</topic><topic>Cell Line</topic><topic>Cells, Cultured</topic><topic>Colforsin - pharmacology</topic><topic>CRE</topic><topic>cyclic AMP</topic><topic>Cyclic AMP - metabolism</topic><topic>Cytophotometry</topic><topic>Diabetes</topic><topic>Diabetes. Impaired glucose tolerance</topic><topic>Electrophysiology</topic><topic>Endocrine pancreas. Apud cells (diseases)</topic><topic>Endocrinopathies</topic><topic>Etiopathogenesis. Screening. Investigations. Target tissue resistance</topic><topic>exocytosis</topic><topic>Gene expression</topic><topic>GLP-1</topic><topic>Glucagon</topic><topic>Glucagon-Like Peptide 1 - pharmacology</topic><topic>Glucagon-Like Peptide-1 Receptor</topic><topic>Glucose</topic><topic>Glucose - pharmacology</topic><topic>Glucotoxicity</topic><topic>Growth factors</topic><topic>Homeostasis</topic><topic>Human Physiology</topic><topic>Humans</topic><topic>Incretins</topic><topic>Insulin</topic><topic>Insulin-Secreting Cells - drug effects</topic><topic>Insulin-Secreting Cells - enzymology</topic><topic>Insulin-Secreting Cells - metabolism</topic><topic>Internal Medicine</topic><topic>Islets</topic><topic>Kinases</topic><topic>Medical sciences</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Metabolic Diseases</topic><topic>Models, Biological</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Peptides</topic><topic>Physiology</topic><topic>Plasmids</topic><topic>Polymerase Chain Reaction</topic><topic>Proteins</topic><topic>Rats</topic><topic>Receptors, Glucagon - genetics</topic><topic>Receptors, Glucagon - metabolism</topic><topic>Signal transduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roger, B</creatorcontrib><creatorcontrib>Papin, J</creatorcontrib><creatorcontrib>Vacher, P</creatorcontrib><creatorcontrib>Raoux, M</creatorcontrib><creatorcontrib>Mulot, A</creatorcontrib><creatorcontrib>Dubois, M</creatorcontrib><creatorcontrib>Kerr-Conte, J</creatorcontrib><creatorcontrib>Voy, B. H</creatorcontrib><creatorcontrib>Pattou, F</creatorcontrib><creatorcontrib>Charpentier, G</creatorcontrib><creatorcontrib>Jonas, J.-C</creatorcontrib><creatorcontrib>Moustaïd-Moussa, N</creatorcontrib><creatorcontrib>Lang, J</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Diabetologia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roger, B</au><au>Papin, J</au><au>Vacher, P</au><au>Raoux, M</au><au>Mulot, A</au><au>Dubois, M</au><au>Kerr-Conte, J</au><au>Voy, B. H</au><au>Pattou, F</au><au>Charpentier, G</au><au>Jonas, J.-C</au><au>Moustaïd-Moussa, N</au><au>Lang, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adenylyl cyclase 8 is central to glucagon-like peptide 1 signalling and effects of chronically elevated glucose in rat and human pancreatic beta cells</atitle><jtitle>Diabetologia</jtitle><stitle>Diabetologia</stitle><addtitle>Diabetologia</addtitle><date>2011-02-01</date><risdate>2011</risdate><volume>54</volume><issue>2</issue><spage>390</spage><epage>402</epage><pages>390-402</pages><issn>0012-186X</issn><eissn>1432-0428</eissn><abstract>Aims/hypothesis Glucose and incretins regulate beta cell function, gene expression and insulin exocytosis via calcium and cAMP. Prolonged exposure to elevated glucose (also termed glucotoxicity) disturbs calcium homeostasis, but little is known about cAMP signalling. We therefore investigated long-term effects of glucose on this pathway with special regard to the incretin glucagon-like peptide 1 (GLP-1). Methods We exposed INS-1E cells and rat or human islets to different levels of glucose for 3 days and determined functional responses in terms of second messengers (cAMP, Ca²⁺), transcription profiles, activation of cAMP-responsive element (CRE) and secretion by measuring membrane capacitance. Moreover, we modulated directly the abundance of a calcium-sensitive adenylyl cyclase (ADCY8) and GLP-1 receptor (GLP1R). Results GLP-1- or forskolin-mediated increases in cytosolic calcium, cAMP-levels or insulin secretion were largely reduced in INS-1E cells cultured at elevated glucose (&gt;5.5 mmol/l). Statistical analysis of transcription profiles identified cAMP pathways as major targets regulated by glucose. Quantitative PCR confirmed these findings and unravelled marked downregulation of the calcium-sensitive adenylyl cyclase ADCY8 also in rat and in human islets. Re-expression of ADCY8, but not of the GLP1R, recovered GLP-1 signalling in glucotoxicity in INS-1E cells and in rat islets. Moreover, knockdown of this adenylyl cyclase showed that GLP-1-induced cAMP generation, calcium signalling, activation of the downstream target CRE and direct amplification of exocytosis by cAMP-raising agents (evaluated by capacitance measurement) proceeds via ADCY8. Conclusions/interpretation cAMP-mediated pathways are modelled by glucose, and downregulation of the calcium-sensitive ADCY8 plays a central role herein, including signalling via the GLP1R.</abstract><cop>Berlin/Heidelberg</cop><pub>Berlin/Heidelberg : Springer-Verlag</pub><pmid>21046358</pmid><doi>10.1007/s00125-010-1955-x</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-186X
ispartof Diabetologia, 2011-02, Vol.54 (2), p.390-402
issn 0012-186X
1432-0428
language eng
recordid cdi_proquest_miscellaneous_822901991
source Springer Link
subjects ADCY8
adenylate cyclase
Adenylyl Cyclases - genetics
Adenylyl Cyclases - metabolism
Animals
Biological and medical sciences
calcium
Calcium - metabolism
Cell Line
Cells, Cultured
Colforsin - pharmacology
CRE
cyclic AMP
Cyclic AMP - metabolism
Cytophotometry
Diabetes
Diabetes. Impaired glucose tolerance
Electrophysiology
Endocrine pancreas. Apud cells (diseases)
Endocrinopathies
Etiopathogenesis. Screening. Investigations. Target tissue resistance
exocytosis
Gene expression
GLP-1
Glucagon
Glucagon-Like Peptide 1 - pharmacology
Glucagon-Like Peptide-1 Receptor
Glucose
Glucose - pharmacology
Glucotoxicity
Growth factors
Homeostasis
Human Physiology
Humans
Incretins
Insulin
Insulin-Secreting Cells - drug effects
Insulin-Secreting Cells - enzymology
Insulin-Secreting Cells - metabolism
Internal Medicine
Islets
Kinases
Medical sciences
Medicine
Medicine & Public Health
Metabolic Diseases
Models, Biological
Oligonucleotide Array Sequence Analysis
Peptides
Physiology
Plasmids
Polymerase Chain Reaction
Proteins
Rats
Receptors, Glucagon - genetics
Receptors, Glucagon - metabolism
Signal transduction
title Adenylyl cyclase 8 is central to glucagon-like peptide 1 signalling and effects of chronically elevated glucose in rat and human pancreatic beta cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T05%3A18%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adenylyl%20cyclase%208%20is%20central%20to%20glucagon-like%20peptide%201%20signalling%20and%20effects%20of%20chronically%20elevated%20glucose%20in%20rat%20and%20human%20pancreatic%20beta%20cells&rft.jtitle=Diabetologia&rft.au=Roger,%20B&rft.date=2011-02-01&rft.volume=54&rft.issue=2&rft.spage=390&rft.epage=402&rft.pages=390-402&rft.issn=0012-186X&rft.eissn=1432-0428&rft_id=info:doi/10.1007/s00125-010-1955-x&rft_dat=%3Cproquest_cross%3E822901991%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c467t-df52032dd014a778ff870ae2702bd2d8a01f92af97e00ef5fc09548a8eef3ec23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=822712034&rft_id=info:pmid/21046358&rfr_iscdi=true