Loading…
Chemical analysis of cell wall regeneration and reversion of protoplasts from Schizophyllum commune
In the presence of MgSo4 as osmotic stabilizer, nucleated protoplasts of Schizophyllum commune developed a large vacuole and could be isolated on the basis of their low buoyant density. All these protoplasts were capable of wall regeneration and about 50 percent reverted to the hyphal mode of growth...
Saved in:
Published in: | Archives of microbiology 1975-01, Vol.102 (3), p.209-218 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the presence of MgSo4 as osmotic stabilizer, nucleated protoplasts of Schizophyllum commune developed a large vacuole and could be isolated on the basis of their low buoyant density. All these protoplasts were capable of wall regeneration and about 50 percent reverted to the hyphal mode of growth in liquid medium. The kinetics of the formation of three main cell-wall components, S-glucan (alpha-1,3-glucan), R-glucan (beta-1,3, beta-1,6-glucan) and chitin were studied from the onset of regeneration. S-glucan and chitin accumulation as well as RNA and protein synthesis started simultaneously after a short lag, but R-glucan formation was delayed. The reversion of hyphal tubes only began after several hours of rapid R-glucan synthesis. Cycloheximide (0.5 mug/ml), inhibiting protein synthesis by 98% inhibited the formation of R-glucan and the reversion to hyphal growth but the formation of chitin and S-glucan did start and continued seemingly unimpaired for several hours. This indicates that the enzymes responsible for the synthesis of S-glucan and chitin remained intact during protoplast preparation. Polyoxin D inhibited both the synthesis of chitin and R-glucan and also the reversion to hyphal growth. However, the synthesis of S-glucan was not suppressed. These inhibitor studies as well as the kinetics of R-glucan formation during normal regeneration suggest that the synthesis of R-glucan is required for the initiation of hyphal morphogenesis. |
---|---|
ISSN: | 0302-8933 1432-072X |
DOI: | 10.1007/bf00428371 |