Loading…
Spermiogenesis in the teleost Gambusia affinis with particular reference to the role played by microtubules
During nuclear elongation in spermatids of Gambusia affinis, a deep fossa is formed at the base of the nucleus in which the centriolar complex and proximal portion of the flagellum reside. To stabilize the positional relationship between the nucleus and centriolar complex, while nuclear morphogenesi...
Saved in:
Published in: | Cell and tissue research 1975-12, Vol.165 (1), p.89-102 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | During nuclear elongation in spermatids of Gambusia affinis, a deep fossa is formed at the base of the nucleus in which the centriolar complex and proximal portion of the flagellum reside. To stabilize the positional relationship between the nucleus and centriolar complex, while nuclear morphogenesis is taking place, a series of microtubules develop which emanate from the centriolar complex and extend to the nuclear envelope lining the fossa. Buttressing microtubules also develop within the nuclear fossa which both originate and insert along the nuclear envelope. These appear to stabilize nuclear shape prior to the time when chromatin condensation has proceeded to the stage where it could lend structural stability to nuclear form. Microtubules develop only after specific nuclear morphogenic events have taken place. It is therefore concluded that the spermatid nucleus is capable of "self-assembly" involving microtubules in a supportive role in addition to stabilizing the nuclear-flagellar relationship in G. affinis. The pattern of nuclear fossa-associated microtubules in G. affinis is significantly different from that observed in other poeciliid teleosts indicating a degree of species specificity with regard to both the timing of appearance and total number of microtubules. |
---|---|
ISSN: | 0302-766X 1432-0878 |
DOI: | 10.1007/BF00222802 |