Loading…
Quantification of the passive mechanical properties of the resting platelet
Sudden coronary artery occlusion is one of the leading causes of death. Several in vitro models have been used to study the relationship between hemodynamic forces and platelet function. However, very few in vivo studies exist that fully explore this relationship due to the lack of rheologic data fo...
Saved in:
Published in: | Annals of biomedical engineering 1998-03, Vol.26 (2), p.268-277 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Sudden coronary artery occlusion is one of the leading causes of death. Several in vitro models have been used to study the relationship between hemodynamic forces and platelet function. However, very few in vivo studies exist that fully explore this relationship due to the lack of rheologic data for the platelet. For this purpose, micropipette aspiration techniques were used in the present study to determine the mechanical properties of platelets. The data were analyzed by two mathematical models: (1) an erythrocyte-type membrane model which yielded a platelet shear modulus of 0.03+/-0.01 dyn cm[-1] (mean+/-SD) and a viscous modulus of 0.12+/-0.04 dyn s cm[-1]. (2) An endothelial-type cell model which approximated the platelet Young's modulus to be 1.7+/-0.6 x 10(3) dyn cm(-2) with a viscous modulus of 1.0+/-0.5 x 10(4) dyn s cm(-2). The endothelial-type cell model more accurately describes the mechanics occurring at the micropipette tip and permits more appropriate assumptions to be made in quantifying the rheologic properties of a platelet. Results from this study can be integrated into numerical models of blood flow in stenosed coronary arteries to elucidate the impact of local hemodynamics on platelets and thrombus formation in coronary artery disease. |
---|---|
ISSN: | 0090-6964 1573-9686 |
DOI: | 10.1114/1.118 |