Loading…

Quantification of the passive mechanical properties of the resting platelet

Sudden coronary artery occlusion is one of the leading causes of death. Several in vitro models have been used to study the relationship between hemodynamic forces and platelet function. However, very few in vivo studies exist that fully explore this relationship due to the lack of rheologic data fo...

Full description

Saved in:
Bibliographic Details
Published in:Annals of biomedical engineering 1998-03, Vol.26 (2), p.268-277
Main Authors: HAGA, J. H, BEAUDOIN, A. J, WHITE, J. G, STRONY, J
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Sudden coronary artery occlusion is one of the leading causes of death. Several in vitro models have been used to study the relationship between hemodynamic forces and platelet function. However, very few in vivo studies exist that fully explore this relationship due to the lack of rheologic data for the platelet. For this purpose, micropipette aspiration techniques were used in the present study to determine the mechanical properties of platelets. The data were analyzed by two mathematical models: (1) an erythrocyte-type membrane model which yielded a platelet shear modulus of 0.03+/-0.01 dyn cm[-1] (mean+/-SD) and a viscous modulus of 0.12+/-0.04 dyn s cm[-1]. (2) An endothelial-type cell model which approximated the platelet Young's modulus to be 1.7+/-0.6 x 10(3) dyn cm(-2) with a viscous modulus of 1.0+/-0.5 x 10(4) dyn s cm(-2). The endothelial-type cell model more accurately describes the mechanics occurring at the micropipette tip and permits more appropriate assumptions to be made in quantifying the rheologic properties of a platelet. Results from this study can be integrated into numerical models of blood flow in stenosed coronary arteries to elucidate the impact of local hemodynamics on platelets and thrombus formation in coronary artery disease.
ISSN:0090-6964
1573-9686
DOI:10.1114/1.118