Loading…
Variational Approach to Power Evolution in Cascaded Fiber Raman Laser
A variational approach is formulated and implemented for numerically solving a system of nonlinear two-point boundary value problem (BVP) with coupled boundary conditions modeling the power evolution in cascaded fiber Raman laser with the fiber Bragg gratings at the ends of the cavity. The nonlinear...
Saved in:
Published in: | Journal of lightwave technology 2010-11, Vol.28 (21), p.3136-3141 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c278t-f5e84ea5f469cc0e71d7edb06b24020ef70db8c8c4211bfd9c096b2304e96213 |
container_end_page | 3141 |
container_issue | 21 |
container_start_page | 3136 |
container_title | Journal of lightwave technology |
container_volume | 28 |
creator | Tarman, Hakan I Berberoglu, Halil |
description | A variational approach is formulated and implemented for numerically solving a system of nonlinear two-point boundary value problem (BVP) with coupled boundary conditions modeling the power evolution in cascaded fiber Raman laser with the fiber Bragg gratings at the ends of the cavity. The nonlinearity is treated by successive linearization and the coupled boundary conditions are naturally incorporated into the system through integration in the variational setting. A global approximation of the dependent variables in terms of Legendre polynomials is used to provide a stable Lagrangian interpolation representation as well as the Legendre-Gauss quadrature for accurate numerical evaluation of integrals in the variational formulation. An initial approximate solution is constructed for the delicate convergence to the solution. The approach is validated against an approximate analytic solution and some exact integrals of the variables. The numerical experiments show exponential (spectral) accuracy achieved with much lower resolution in comparison to a widely available BVP solver. Further numerical experiments are performed to reveal the physical characteristics of the underlying model. |
doi_str_mv | 10.1109/JLT.2010.2076774 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_831182061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5575367</ieee_id><sourcerecordid>831182061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c278t-f5e84ea5f469cc0e71d7edb06b24020ef70db8c8c4211bfd9c096b2304e96213</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt3wUsu4mnr5GM32WMprR8UFCleQzY7i5Htbk22iv-9WVo8DcN7b5j3I-SawYwxKO-f15sZh7RxUIVS8oRMWJ7rjHMmTskElBCZVlyek4sYPwGYlFpNyPLdBm8H33e2pfPdLvTWfdChp6_9Dwa6_O7b_ahS39GFjc7WWNOVr5L2Zre2o2sbMVySs8a2Ea-Oc0o2q-Vm8ZitXx6eFvN15rjSQ9bkqCXavJFF6RygYrXCuoKi4hI4YKOgrrTTTnLGqqYuHZRJEyCxLFKPKbk7nE1vfu0xDmbro8O2tR32-2i0YExzKEYnHJwu9DEGbMwu-K0Nv4aBGXmZxMuMvMyRV4rcHo-PNdsm2M75-J_joiiF4JB8NwefR8R_Oc9VLgol_gAoNXKZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>831182061</pqid></control><display><type>article</type><title>Variational Approach to Power Evolution in Cascaded Fiber Raman Laser</title><source>IEEE Xplore (Online service)</source><creator>Tarman, Hakan I ; Berberoglu, Halil</creator><creatorcontrib>Tarman, Hakan I ; Berberoglu, Halil</creatorcontrib><description>A variational approach is formulated and implemented for numerically solving a system of nonlinear two-point boundary value problem (BVP) with coupled boundary conditions modeling the power evolution in cascaded fiber Raman laser with the fiber Bragg gratings at the ends of the cavity. The nonlinearity is treated by successive linearization and the coupled boundary conditions are naturally incorporated into the system through integration in the variational setting. A global approximation of the dependent variables in terms of Legendre polynomials is used to provide a stable Lagrangian interpolation representation as well as the Legendre-Gauss quadrature for accurate numerical evaluation of integrals in the variational formulation. An initial approximate solution is constructed for the delicate convergence to the solution. The approach is validated against an approximate analytic solution and some exact integrals of the variables. The numerical experiments show exponential (spectral) accuracy achieved with much lower resolution in comparison to a widely available BVP solver. Further numerical experiments are performed to reveal the physical characteristics of the underlying model.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2010.2076774</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Accuracy ; Applied sciences ; Approximation ; Approximation methods ; Boundary conditions ; Boundary value problems ; Cavity resonators ; Circuit properties ; Doped-insulator lasers and other solid state lasers ; Electric, optical and optoelectronic circuits ; Electronics ; Exact sciences and technology ; Exact solutions ; Fiber lasers ; fiber Raman lasers (FRL) ; Fibers ; Fundamental areas of phenomenology (including applications) ; Integrated optics. Optical fibers and wave guides ; Lasers ; Mathematical analysis ; Mathematical model ; Mathematical models ; Nonlinearity ; Numerical models ; Optical and optoelectronic circuits ; Optics ; Physics ; Polynomials ; Raman lasers ; variational method</subject><ispartof>Journal of lightwave technology, 2010-11, Vol.28 (21), p.3136-3141</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c278t-f5e84ea5f469cc0e71d7edb06b24020ef70db8c8c4211bfd9c096b2304e96213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5575367$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23693320$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tarman, Hakan I</creatorcontrib><creatorcontrib>Berberoglu, Halil</creatorcontrib><title>Variational Approach to Power Evolution in Cascaded Fiber Raman Laser</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>A variational approach is formulated and implemented for numerically solving a system of nonlinear two-point boundary value problem (BVP) with coupled boundary conditions modeling the power evolution in cascaded fiber Raman laser with the fiber Bragg gratings at the ends of the cavity. The nonlinearity is treated by successive linearization and the coupled boundary conditions are naturally incorporated into the system through integration in the variational setting. A global approximation of the dependent variables in terms of Legendre polynomials is used to provide a stable Lagrangian interpolation representation as well as the Legendre-Gauss quadrature for accurate numerical evaluation of integrals in the variational formulation. An initial approximate solution is constructed for the delicate convergence to the solution. The approach is validated against an approximate analytic solution and some exact integrals of the variables. The numerical experiments show exponential (spectral) accuracy achieved with much lower resolution in comparison to a widely available BVP solver. Further numerical experiments are performed to reveal the physical characteristics of the underlying model.</description><subject>Accuracy</subject><subject>Applied sciences</subject><subject>Approximation</subject><subject>Approximation methods</subject><subject>Boundary conditions</subject><subject>Boundary value problems</subject><subject>Cavity resonators</subject><subject>Circuit properties</subject><subject>Doped-insulator lasers and other solid state lasers</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Exact solutions</subject><subject>Fiber lasers</subject><subject>fiber Raman lasers (FRL)</subject><subject>Fibers</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Integrated optics. Optical fibers and wave guides</subject><subject>Lasers</subject><subject>Mathematical analysis</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Nonlinearity</subject><subject>Numerical models</subject><subject>Optical and optoelectronic circuits</subject><subject>Optics</subject><subject>Physics</subject><subject>Polynomials</subject><subject>Raman lasers</subject><subject>variational method</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNo9kM1LAzEQxYMoWKt3wUsu4mnr5GM32WMprR8UFCleQzY7i5Htbk22iv-9WVo8DcN7b5j3I-SawYwxKO-f15sZh7RxUIVS8oRMWJ7rjHMmTskElBCZVlyek4sYPwGYlFpNyPLdBm8H33e2pfPdLvTWfdChp6_9Dwa6_O7b_ahS39GFjc7WWNOVr5L2Zre2o2sbMVySs8a2Ea-Oc0o2q-Vm8ZitXx6eFvN15rjSQ9bkqCXavJFF6RygYrXCuoKi4hI4YKOgrrTTTnLGqqYuHZRJEyCxLFKPKbk7nE1vfu0xDmbro8O2tR32-2i0YExzKEYnHJwu9DEGbMwu-K0Nv4aBGXmZxMuMvMyRV4rcHo-PNdsm2M75-J_joiiF4JB8NwefR8R_Oc9VLgol_gAoNXKZ</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Tarman, Hakan I</creator><creator>Berberoglu, Halil</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20101101</creationdate><title>Variational Approach to Power Evolution in Cascaded Fiber Raman Laser</title><author>Tarman, Hakan I ; Berberoglu, Halil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c278t-f5e84ea5f469cc0e71d7edb06b24020ef70db8c8c4211bfd9c096b2304e96213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Accuracy</topic><topic>Applied sciences</topic><topic>Approximation</topic><topic>Approximation methods</topic><topic>Boundary conditions</topic><topic>Boundary value problems</topic><topic>Cavity resonators</topic><topic>Circuit properties</topic><topic>Doped-insulator lasers and other solid state lasers</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Exact solutions</topic><topic>Fiber lasers</topic><topic>fiber Raman lasers (FRL)</topic><topic>Fibers</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Integrated optics. Optical fibers and wave guides</topic><topic>Lasers</topic><topic>Mathematical analysis</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Nonlinearity</topic><topic>Numerical models</topic><topic>Optical and optoelectronic circuits</topic><topic>Optics</topic><topic>Physics</topic><topic>Polynomials</topic><topic>Raman lasers</topic><topic>variational method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tarman, Hakan I</creatorcontrib><creatorcontrib>Berberoglu, Halil</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tarman, Hakan I</au><au>Berberoglu, Halil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variational Approach to Power Evolution in Cascaded Fiber Raman Laser</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2010-11-01</date><risdate>2010</risdate><volume>28</volume><issue>21</issue><spage>3136</spage><epage>3141</epage><pages>3136-3141</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>A variational approach is formulated and implemented for numerically solving a system of nonlinear two-point boundary value problem (BVP) with coupled boundary conditions modeling the power evolution in cascaded fiber Raman laser with the fiber Bragg gratings at the ends of the cavity. The nonlinearity is treated by successive linearization and the coupled boundary conditions are naturally incorporated into the system through integration in the variational setting. A global approximation of the dependent variables in terms of Legendre polynomials is used to provide a stable Lagrangian interpolation representation as well as the Legendre-Gauss quadrature for accurate numerical evaluation of integrals in the variational formulation. An initial approximate solution is constructed for the delicate convergence to the solution. The approach is validated against an approximate analytic solution and some exact integrals of the variables. The numerical experiments show exponential (spectral) accuracy achieved with much lower resolution in comparison to a widely available BVP solver. Further numerical experiments are performed to reveal the physical characteristics of the underlying model.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/JLT.2010.2076774</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0733-8724 |
ispartof | Journal of lightwave technology, 2010-11, Vol.28 (21), p.3136-3141 |
issn | 0733-8724 1558-2213 |
language | eng |
recordid | cdi_proquest_miscellaneous_831182061 |
source | IEEE Xplore (Online service) |
subjects | Accuracy Applied sciences Approximation Approximation methods Boundary conditions Boundary value problems Cavity resonators Circuit properties Doped-insulator lasers and other solid state lasers Electric, optical and optoelectronic circuits Electronics Exact sciences and technology Exact solutions Fiber lasers fiber Raman lasers (FRL) Fibers Fundamental areas of phenomenology (including applications) Integrated optics. Optical fibers and wave guides Lasers Mathematical analysis Mathematical model Mathematical models Nonlinearity Numerical models Optical and optoelectronic circuits Optics Physics Polynomials Raman lasers variational method |
title | Variational Approach to Power Evolution in Cascaded Fiber Raman Laser |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A31%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variational%20Approach%20to%20Power%20Evolution%20in%20Cascaded%20Fiber%20Raman%20Laser&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Tarman,%20Hakan%20I&rft.date=2010-11-01&rft.volume=28&rft.issue=21&rft.spage=3136&rft.epage=3141&rft.pages=3136-3141&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2010.2076774&rft_dat=%3Cproquest_ieee_%3E831182061%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c278t-f5e84ea5f469cc0e71d7edb06b24020ef70db8c8c4211bfd9c096b2304e96213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=831182061&rft_id=info:pmid/&rft_ieee_id=5575367&rfr_iscdi=true |