Loading…

Variational Approach to Power Evolution in Cascaded Fiber Raman Laser

A variational approach is formulated and implemented for numerically solving a system of nonlinear two-point boundary value problem (BVP) with coupled boundary conditions modeling the power evolution in cascaded fiber Raman laser with the fiber Bragg gratings at the ends of the cavity. The nonlinear...

Full description

Saved in:
Bibliographic Details
Published in:Journal of lightwave technology 2010-11, Vol.28 (21), p.3136-3141
Main Authors: Tarman, Hakan I, Berberoglu, Halil
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c278t-f5e84ea5f469cc0e71d7edb06b24020ef70db8c8c4211bfd9c096b2304e96213
container_end_page 3141
container_issue 21
container_start_page 3136
container_title Journal of lightwave technology
container_volume 28
creator Tarman, Hakan I
Berberoglu, Halil
description A variational approach is formulated and implemented for numerically solving a system of nonlinear two-point boundary value problem (BVP) with coupled boundary conditions modeling the power evolution in cascaded fiber Raman laser with the fiber Bragg gratings at the ends of the cavity. The nonlinearity is treated by successive linearization and the coupled boundary conditions are naturally incorporated into the system through integration in the variational setting. A global approximation of the dependent variables in terms of Legendre polynomials is used to provide a stable Lagrangian interpolation representation as well as the Legendre-Gauss quadrature for accurate numerical evaluation of integrals in the variational formulation. An initial approximate solution is constructed for the delicate convergence to the solution. The approach is validated against an approximate analytic solution and some exact integrals of the variables. The numerical experiments show exponential (spectral) accuracy achieved with much lower resolution in comparison to a widely available BVP solver. Further numerical experiments are performed to reveal the physical characteristics of the underlying model.
doi_str_mv 10.1109/JLT.2010.2076774
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_831182061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5575367</ieee_id><sourcerecordid>831182061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c278t-f5e84ea5f469cc0e71d7edb06b24020ef70db8c8c4211bfd9c096b2304e96213</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt3wUsu4mnr5GM32WMprR8UFCleQzY7i5Htbk22iv-9WVo8DcN7b5j3I-SawYwxKO-f15sZh7RxUIVS8oRMWJ7rjHMmTskElBCZVlyek4sYPwGYlFpNyPLdBm8H33e2pfPdLvTWfdChp6_9Dwa6_O7b_ahS39GFjc7WWNOVr5L2Zre2o2sbMVySs8a2Ea-Oc0o2q-Vm8ZitXx6eFvN15rjSQ9bkqCXavJFF6RygYrXCuoKi4hI4YKOgrrTTTnLGqqYuHZRJEyCxLFKPKbk7nE1vfu0xDmbro8O2tR32-2i0YExzKEYnHJwu9DEGbMwu-K0Nv4aBGXmZxMuMvMyRV4rcHo-PNdsm2M75-J_joiiF4JB8NwefR8R_Oc9VLgol_gAoNXKZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>831182061</pqid></control><display><type>article</type><title>Variational Approach to Power Evolution in Cascaded Fiber Raman Laser</title><source>IEEE Xplore (Online service)</source><creator>Tarman, Hakan I ; Berberoglu, Halil</creator><creatorcontrib>Tarman, Hakan I ; Berberoglu, Halil</creatorcontrib><description>A variational approach is formulated and implemented for numerically solving a system of nonlinear two-point boundary value problem (BVP) with coupled boundary conditions modeling the power evolution in cascaded fiber Raman laser with the fiber Bragg gratings at the ends of the cavity. The nonlinearity is treated by successive linearization and the coupled boundary conditions are naturally incorporated into the system through integration in the variational setting. A global approximation of the dependent variables in terms of Legendre polynomials is used to provide a stable Lagrangian interpolation representation as well as the Legendre-Gauss quadrature for accurate numerical evaluation of integrals in the variational formulation. An initial approximate solution is constructed for the delicate convergence to the solution. The approach is validated against an approximate analytic solution and some exact integrals of the variables. The numerical experiments show exponential (spectral) accuracy achieved with much lower resolution in comparison to a widely available BVP solver. Further numerical experiments are performed to reveal the physical characteristics of the underlying model.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2010.2076774</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Accuracy ; Applied sciences ; Approximation ; Approximation methods ; Boundary conditions ; Boundary value problems ; Cavity resonators ; Circuit properties ; Doped-insulator lasers and other solid state lasers ; Electric, optical and optoelectronic circuits ; Electronics ; Exact sciences and technology ; Exact solutions ; Fiber lasers ; fiber Raman lasers (FRL) ; Fibers ; Fundamental areas of phenomenology (including applications) ; Integrated optics. Optical fibers and wave guides ; Lasers ; Mathematical analysis ; Mathematical model ; Mathematical models ; Nonlinearity ; Numerical models ; Optical and optoelectronic circuits ; Optics ; Physics ; Polynomials ; Raman lasers ; variational method</subject><ispartof>Journal of lightwave technology, 2010-11, Vol.28 (21), p.3136-3141</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c278t-f5e84ea5f469cc0e71d7edb06b24020ef70db8c8c4211bfd9c096b2304e96213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5575367$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23693320$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tarman, Hakan I</creatorcontrib><creatorcontrib>Berberoglu, Halil</creatorcontrib><title>Variational Approach to Power Evolution in Cascaded Fiber Raman Laser</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>A variational approach is formulated and implemented for numerically solving a system of nonlinear two-point boundary value problem (BVP) with coupled boundary conditions modeling the power evolution in cascaded fiber Raman laser with the fiber Bragg gratings at the ends of the cavity. The nonlinearity is treated by successive linearization and the coupled boundary conditions are naturally incorporated into the system through integration in the variational setting. A global approximation of the dependent variables in terms of Legendre polynomials is used to provide a stable Lagrangian interpolation representation as well as the Legendre-Gauss quadrature for accurate numerical evaluation of integrals in the variational formulation. An initial approximate solution is constructed for the delicate convergence to the solution. The approach is validated against an approximate analytic solution and some exact integrals of the variables. The numerical experiments show exponential (spectral) accuracy achieved with much lower resolution in comparison to a widely available BVP solver. Further numerical experiments are performed to reveal the physical characteristics of the underlying model.</description><subject>Accuracy</subject><subject>Applied sciences</subject><subject>Approximation</subject><subject>Approximation methods</subject><subject>Boundary conditions</subject><subject>Boundary value problems</subject><subject>Cavity resonators</subject><subject>Circuit properties</subject><subject>Doped-insulator lasers and other solid state lasers</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Exact solutions</subject><subject>Fiber lasers</subject><subject>fiber Raman lasers (FRL)</subject><subject>Fibers</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Integrated optics. Optical fibers and wave guides</subject><subject>Lasers</subject><subject>Mathematical analysis</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Nonlinearity</subject><subject>Numerical models</subject><subject>Optical and optoelectronic circuits</subject><subject>Optics</subject><subject>Physics</subject><subject>Polynomials</subject><subject>Raman lasers</subject><subject>variational method</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNo9kM1LAzEQxYMoWKt3wUsu4mnr5GM32WMprR8UFCleQzY7i5Htbk22iv-9WVo8DcN7b5j3I-SawYwxKO-f15sZh7RxUIVS8oRMWJ7rjHMmTskElBCZVlyek4sYPwGYlFpNyPLdBm8H33e2pfPdLvTWfdChp6_9Dwa6_O7b_ahS39GFjc7WWNOVr5L2Zre2o2sbMVySs8a2Ea-Oc0o2q-Vm8ZitXx6eFvN15rjSQ9bkqCXavJFF6RygYrXCuoKi4hI4YKOgrrTTTnLGqqYuHZRJEyCxLFKPKbk7nE1vfu0xDmbro8O2tR32-2i0YExzKEYnHJwu9DEGbMwu-K0Nv4aBGXmZxMuMvMyRV4rcHo-PNdsm2M75-J_joiiF4JB8NwefR8R_Oc9VLgol_gAoNXKZ</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Tarman, Hakan I</creator><creator>Berberoglu, Halil</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20101101</creationdate><title>Variational Approach to Power Evolution in Cascaded Fiber Raman Laser</title><author>Tarman, Hakan I ; Berberoglu, Halil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c278t-f5e84ea5f469cc0e71d7edb06b24020ef70db8c8c4211bfd9c096b2304e96213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Accuracy</topic><topic>Applied sciences</topic><topic>Approximation</topic><topic>Approximation methods</topic><topic>Boundary conditions</topic><topic>Boundary value problems</topic><topic>Cavity resonators</topic><topic>Circuit properties</topic><topic>Doped-insulator lasers and other solid state lasers</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Exact solutions</topic><topic>Fiber lasers</topic><topic>fiber Raman lasers (FRL)</topic><topic>Fibers</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Integrated optics. Optical fibers and wave guides</topic><topic>Lasers</topic><topic>Mathematical analysis</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Nonlinearity</topic><topic>Numerical models</topic><topic>Optical and optoelectronic circuits</topic><topic>Optics</topic><topic>Physics</topic><topic>Polynomials</topic><topic>Raman lasers</topic><topic>variational method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tarman, Hakan I</creatorcontrib><creatorcontrib>Berberoglu, Halil</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tarman, Hakan I</au><au>Berberoglu, Halil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variational Approach to Power Evolution in Cascaded Fiber Raman Laser</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2010-11-01</date><risdate>2010</risdate><volume>28</volume><issue>21</issue><spage>3136</spage><epage>3141</epage><pages>3136-3141</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>A variational approach is formulated and implemented for numerically solving a system of nonlinear two-point boundary value problem (BVP) with coupled boundary conditions modeling the power evolution in cascaded fiber Raman laser with the fiber Bragg gratings at the ends of the cavity. The nonlinearity is treated by successive linearization and the coupled boundary conditions are naturally incorporated into the system through integration in the variational setting. A global approximation of the dependent variables in terms of Legendre polynomials is used to provide a stable Lagrangian interpolation representation as well as the Legendre-Gauss quadrature for accurate numerical evaluation of integrals in the variational formulation. An initial approximate solution is constructed for the delicate convergence to the solution. The approach is validated against an approximate analytic solution and some exact integrals of the variables. The numerical experiments show exponential (spectral) accuracy achieved with much lower resolution in comparison to a widely available BVP solver. Further numerical experiments are performed to reveal the physical characteristics of the underlying model.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/JLT.2010.2076774</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0733-8724
ispartof Journal of lightwave technology, 2010-11, Vol.28 (21), p.3136-3141
issn 0733-8724
1558-2213
language eng
recordid cdi_proquest_miscellaneous_831182061
source IEEE Xplore (Online service)
subjects Accuracy
Applied sciences
Approximation
Approximation methods
Boundary conditions
Boundary value problems
Cavity resonators
Circuit properties
Doped-insulator lasers and other solid state lasers
Electric, optical and optoelectronic circuits
Electronics
Exact sciences and technology
Exact solutions
Fiber lasers
fiber Raman lasers (FRL)
Fibers
Fundamental areas of phenomenology (including applications)
Integrated optics. Optical fibers and wave guides
Lasers
Mathematical analysis
Mathematical model
Mathematical models
Nonlinearity
Numerical models
Optical and optoelectronic circuits
Optics
Physics
Polynomials
Raman lasers
variational method
title Variational Approach to Power Evolution in Cascaded Fiber Raman Laser
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A31%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variational%20Approach%20to%20Power%20Evolution%20in%20Cascaded%20Fiber%20Raman%20Laser&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Tarman,%20Hakan%20I&rft.date=2010-11-01&rft.volume=28&rft.issue=21&rft.spage=3136&rft.epage=3141&rft.pages=3136-3141&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2010.2076774&rft_dat=%3Cproquest_ieee_%3E831182061%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c278t-f5e84ea5f469cc0e71d7edb06b24020ef70db8c8c4211bfd9c096b2304e96213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=831182061&rft_id=info:pmid/&rft_ieee_id=5575367&rfr_iscdi=true