Loading…
Air-plasma-sprayed thermal barrier coatings that are resistant to high-temperature attack by glassy deposits
Thermal barrier coatings (TBCs) used in gas-turbine engines afford higher operating temperatures, resulting in enhanced efficiencies and performance. However, at these high operating temperatures, environmentally ingested airborne sand/ash particles melt on the hot TBC surfaces and form calcium–magn...
Saved in:
Published in: | Acta materialia 2010-12, Vol.58 (20), p.6835-6844 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c341t-a9071c09ae1577d5332f352e8f0d0ea46f19e134032fadb27b7242240a0819303 |
---|---|
cites | cdi_FETCH-LOGICAL-c341t-a9071c09ae1577d5332f352e8f0d0ea46f19e134032fadb27b7242240a0819303 |
container_end_page | 6844 |
container_issue | 20 |
container_start_page | 6835 |
container_title | Acta materialia |
container_volume | 58 |
creator | Drexler, Julie M. Shinoda, Kentaro Ortiz, Angel L. Li, Dongsheng Vasiliev, Alexander L. Gledhill, Andrew D. Sampath, Sanjay Padture, Nitin P. |
description | Thermal barrier coatings (TBCs) used in gas-turbine engines afford higher operating temperatures, resulting in enhanced efficiencies and performance. However, at these high operating temperatures, environmentally ingested airborne sand/ash particles melt on the hot TBC surfaces and form calcium–magnesium–aluminosilicate (CMAS) glass deposits. The molten CMAS glass penetrates the TBCs, leading to loss of strain tolerance and TBC failure. Here we demonstrate the use of the commercial manufacturing method of air-plasma-spray (APS) to fabricate CMAS-resistant yttria-stabilized zirconia (YSZ)-based TBCs containing Al and Ti in solid solution. Results from thermal stability studies of these new TBCs and CMAS/TBC interaction experiments are presented, together with a discussion of the CMAS mitigation mechanisms. The ubiquity of airborne sand/ash particles and the ever-increasing demand for higher operating temperatures in future high efficiency/performance gas-turbine engines will necessitate CMAS resistance in all hot-section components of those engines. In this context the versatility, ease of processing, and low cost offered by the APS method has broad implications for the design and fabrication of next-generation CMAS-resistant TBCs for future engines. |
doi_str_mv | 10.1016/j.actamat.2010.09.013 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_831192350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645410005781</els_id><sourcerecordid>831192350</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-a9071c09ae1577d5332f352e8f0d0ea46f19e134032fadb27b7242240a0819303</originalsourceid><addsrcrecordid>eNqFkEtLw0AQx4MoWKsfQdibp9TZR5rmJKX4goIXPS_TzaTdmjRxZyv027ulvXuaYf4PmF-W3UuYSJDTx-0EXcQO40RBukE1AakvspGclTpXptCXaddFlU9NYa6zG-YtgFSlgVHWzn3Ihxa5w5yHgAeqRdxQ6LAVKwzBUxCux-h3a04CRoGBRCD2HHEXRezFxq83eaRuoIBxn1SMEd23WB3EOhXzQdQ09Owj32ZXDbZMd-c5zr5enj8Xb_ny4_V9MV_mThsZc6yglA4qJFmUZV1orRpdKJo1UAOhmTayIqkNpDvWK1WuSmWUMoAwk5UGPc4eTr1D6H_2xNF2nh21Le6o37OdaSkrpYujszg5XeiZAzV2CL7DcLAS7BGu3dozXHuEa6GyCW7KPZ1ylN74TZAsO087R7UP5KKte_9Pwx9SbYac</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>831192350</pqid></control><display><type>article</type><title>Air-plasma-sprayed thermal barrier coatings that are resistant to high-temperature attack by glassy deposits</title><source>ScienceDirect Journals</source><creator>Drexler, Julie M. ; Shinoda, Kentaro ; Ortiz, Angel L. ; Li, Dongsheng ; Vasiliev, Alexander L. ; Gledhill, Andrew D. ; Sampath, Sanjay ; Padture, Nitin P.</creator><creatorcontrib>Drexler, Julie M. ; Shinoda, Kentaro ; Ortiz, Angel L. ; Li, Dongsheng ; Vasiliev, Alexander L. ; Gledhill, Andrew D. ; Sampath, Sanjay ; Padture, Nitin P.</creatorcontrib><description>Thermal barrier coatings (TBCs) used in gas-turbine engines afford higher operating temperatures, resulting in enhanced efficiencies and performance. However, at these high operating temperatures, environmentally ingested airborne sand/ash particles melt on the hot TBC surfaces and form calcium–magnesium–aluminosilicate (CMAS) glass deposits. The molten CMAS glass penetrates the TBCs, leading to loss of strain tolerance and TBC failure. Here we demonstrate the use of the commercial manufacturing method of air-plasma-spray (APS) to fabricate CMAS-resistant yttria-stabilized zirconia (YSZ)-based TBCs containing Al and Ti in solid solution. Results from thermal stability studies of these new TBCs and CMAS/TBC interaction experiments are presented, together with a discussion of the CMAS mitigation mechanisms. The ubiquity of airborne sand/ash particles and the ever-increasing demand for higher operating temperatures in future high efficiency/performance gas-turbine engines will necessitate CMAS resistance in all hot-section components of those engines. In this context the versatility, ease of processing, and low cost offered by the APS method has broad implications for the design and fabrication of next-generation CMAS-resistant TBCs for future engines.</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2010.09.013</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Anorthite ; Ashes ; Crystallization ; Deposition ; Engines ; Gas turbine engines ; Glass ; Operating temperature ; Sand ; Thermal barrier coatings ; Yttria stabilized zirconia ; Zirconia</subject><ispartof>Acta materialia, 2010-12, Vol.58 (20), p.6835-6844</ispartof><rights>2010 Acta Materialia Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-a9071c09ae1577d5332f352e8f0d0ea46f19e134032fadb27b7242240a0819303</citedby><cites>FETCH-LOGICAL-c341t-a9071c09ae1577d5332f352e8f0d0ea46f19e134032fadb27b7242240a0819303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Drexler, Julie M.</creatorcontrib><creatorcontrib>Shinoda, Kentaro</creatorcontrib><creatorcontrib>Ortiz, Angel L.</creatorcontrib><creatorcontrib>Li, Dongsheng</creatorcontrib><creatorcontrib>Vasiliev, Alexander L.</creatorcontrib><creatorcontrib>Gledhill, Andrew D.</creatorcontrib><creatorcontrib>Sampath, Sanjay</creatorcontrib><creatorcontrib>Padture, Nitin P.</creatorcontrib><title>Air-plasma-sprayed thermal barrier coatings that are resistant to high-temperature attack by glassy deposits</title><title>Acta materialia</title><description>Thermal barrier coatings (TBCs) used in gas-turbine engines afford higher operating temperatures, resulting in enhanced efficiencies and performance. However, at these high operating temperatures, environmentally ingested airborne sand/ash particles melt on the hot TBC surfaces and form calcium–magnesium–aluminosilicate (CMAS) glass deposits. The molten CMAS glass penetrates the TBCs, leading to loss of strain tolerance and TBC failure. Here we demonstrate the use of the commercial manufacturing method of air-plasma-spray (APS) to fabricate CMAS-resistant yttria-stabilized zirconia (YSZ)-based TBCs containing Al and Ti in solid solution. Results from thermal stability studies of these new TBCs and CMAS/TBC interaction experiments are presented, together with a discussion of the CMAS mitigation mechanisms. The ubiquity of airborne sand/ash particles and the ever-increasing demand for higher operating temperatures in future high efficiency/performance gas-turbine engines will necessitate CMAS resistance in all hot-section components of those engines. In this context the versatility, ease of processing, and low cost offered by the APS method has broad implications for the design and fabrication of next-generation CMAS-resistant TBCs for future engines.</description><subject>Anorthite</subject><subject>Ashes</subject><subject>Crystallization</subject><subject>Deposition</subject><subject>Engines</subject><subject>Gas turbine engines</subject><subject>Glass</subject><subject>Operating temperature</subject><subject>Sand</subject><subject>Thermal barrier coatings</subject><subject>Yttria stabilized zirconia</subject><subject>Zirconia</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLw0AQx4MoWKsfQdibp9TZR5rmJKX4goIXPS_TzaTdmjRxZyv027ulvXuaYf4PmF-W3UuYSJDTx-0EXcQO40RBukE1AakvspGclTpXptCXaddFlU9NYa6zG-YtgFSlgVHWzn3Ihxa5w5yHgAeqRdxQ6LAVKwzBUxCux-h3a04CRoGBRCD2HHEXRezFxq83eaRuoIBxn1SMEd23WB3EOhXzQdQ09Owj32ZXDbZMd-c5zr5enj8Xb_ny4_V9MV_mThsZc6yglA4qJFmUZV1orRpdKJo1UAOhmTayIqkNpDvWK1WuSmWUMoAwk5UGPc4eTr1D6H_2xNF2nh21Le6o37OdaSkrpYujszg5XeiZAzV2CL7DcLAS7BGu3dozXHuEa6GyCW7KPZ1ylN74TZAsO087R7UP5KKte_9Pwx9SbYac</recordid><startdate>20101201</startdate><enddate>20101201</enddate><creator>Drexler, Julie M.</creator><creator>Shinoda, Kentaro</creator><creator>Ortiz, Angel L.</creator><creator>Li, Dongsheng</creator><creator>Vasiliev, Alexander L.</creator><creator>Gledhill, Andrew D.</creator><creator>Sampath, Sanjay</creator><creator>Padture, Nitin P.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20101201</creationdate><title>Air-plasma-sprayed thermal barrier coatings that are resistant to high-temperature attack by glassy deposits</title><author>Drexler, Julie M. ; Shinoda, Kentaro ; Ortiz, Angel L. ; Li, Dongsheng ; Vasiliev, Alexander L. ; Gledhill, Andrew D. ; Sampath, Sanjay ; Padture, Nitin P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-a9071c09ae1577d5332f352e8f0d0ea46f19e134032fadb27b7242240a0819303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Anorthite</topic><topic>Ashes</topic><topic>Crystallization</topic><topic>Deposition</topic><topic>Engines</topic><topic>Gas turbine engines</topic><topic>Glass</topic><topic>Operating temperature</topic><topic>Sand</topic><topic>Thermal barrier coatings</topic><topic>Yttria stabilized zirconia</topic><topic>Zirconia</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Drexler, Julie M.</creatorcontrib><creatorcontrib>Shinoda, Kentaro</creatorcontrib><creatorcontrib>Ortiz, Angel L.</creatorcontrib><creatorcontrib>Li, Dongsheng</creatorcontrib><creatorcontrib>Vasiliev, Alexander L.</creatorcontrib><creatorcontrib>Gledhill, Andrew D.</creatorcontrib><creatorcontrib>Sampath, Sanjay</creatorcontrib><creatorcontrib>Padture, Nitin P.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Drexler, Julie M.</au><au>Shinoda, Kentaro</au><au>Ortiz, Angel L.</au><au>Li, Dongsheng</au><au>Vasiliev, Alexander L.</au><au>Gledhill, Andrew D.</au><au>Sampath, Sanjay</au><au>Padture, Nitin P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Air-plasma-sprayed thermal barrier coatings that are resistant to high-temperature attack by glassy deposits</atitle><jtitle>Acta materialia</jtitle><date>2010-12-01</date><risdate>2010</risdate><volume>58</volume><issue>20</issue><spage>6835</spage><epage>6844</epage><pages>6835-6844</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>Thermal barrier coatings (TBCs) used in gas-turbine engines afford higher operating temperatures, resulting in enhanced efficiencies and performance. However, at these high operating temperatures, environmentally ingested airborne sand/ash particles melt on the hot TBC surfaces and form calcium–magnesium–aluminosilicate (CMAS) glass deposits. The molten CMAS glass penetrates the TBCs, leading to loss of strain tolerance and TBC failure. Here we demonstrate the use of the commercial manufacturing method of air-plasma-spray (APS) to fabricate CMAS-resistant yttria-stabilized zirconia (YSZ)-based TBCs containing Al and Ti in solid solution. Results from thermal stability studies of these new TBCs and CMAS/TBC interaction experiments are presented, together with a discussion of the CMAS mitigation mechanisms. The ubiquity of airborne sand/ash particles and the ever-increasing demand for higher operating temperatures in future high efficiency/performance gas-turbine engines will necessitate CMAS resistance in all hot-section components of those engines. In this context the versatility, ease of processing, and low cost offered by the APS method has broad implications for the design and fabrication of next-generation CMAS-resistant TBCs for future engines.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2010.09.013</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-6454 |
ispartof | Acta materialia, 2010-12, Vol.58 (20), p.6835-6844 |
issn | 1359-6454 1873-2453 |
language | eng |
recordid | cdi_proquest_miscellaneous_831192350 |
source | ScienceDirect Journals |
subjects | Anorthite Ashes Crystallization Deposition Engines Gas turbine engines Glass Operating temperature Sand Thermal barrier coatings Yttria stabilized zirconia Zirconia |
title | Air-plasma-sprayed thermal barrier coatings that are resistant to high-temperature attack by glassy deposits |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A48%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Air-plasma-sprayed%20thermal%20barrier%20coatings%20that%20are%20resistant%20to%20high-temperature%20attack%20by%20glassy%20deposits&rft.jtitle=Acta%20materialia&rft.au=Drexler,%20Julie%20M.&rft.date=2010-12-01&rft.volume=58&rft.issue=20&rft.spage=6835&rft.epage=6844&rft.pages=6835-6844&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2010.09.013&rft_dat=%3Cproquest_cross%3E831192350%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c341t-a9071c09ae1577d5332f352e8f0d0ea46f19e134032fadb27b7242240a0819303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=831192350&rft_id=info:pmid/&rfr_iscdi=true |