Loading…

Air-plasma-sprayed thermal barrier coatings that are resistant to high-temperature attack by glassy deposits

Thermal barrier coatings (TBCs) used in gas-turbine engines afford higher operating temperatures, resulting in enhanced efficiencies and performance. However, at these high operating temperatures, environmentally ingested airborne sand/ash particles melt on the hot TBC surfaces and form calcium–magn...

Full description

Saved in:
Bibliographic Details
Published in:Acta materialia 2010-12, Vol.58 (20), p.6835-6844
Main Authors: Drexler, Julie M., Shinoda, Kentaro, Ortiz, Angel L., Li, Dongsheng, Vasiliev, Alexander L., Gledhill, Andrew D., Sampath, Sanjay, Padture, Nitin P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c341t-a9071c09ae1577d5332f352e8f0d0ea46f19e134032fadb27b7242240a0819303
cites cdi_FETCH-LOGICAL-c341t-a9071c09ae1577d5332f352e8f0d0ea46f19e134032fadb27b7242240a0819303
container_end_page 6844
container_issue 20
container_start_page 6835
container_title Acta materialia
container_volume 58
creator Drexler, Julie M.
Shinoda, Kentaro
Ortiz, Angel L.
Li, Dongsheng
Vasiliev, Alexander L.
Gledhill, Andrew D.
Sampath, Sanjay
Padture, Nitin P.
description Thermal barrier coatings (TBCs) used in gas-turbine engines afford higher operating temperatures, resulting in enhanced efficiencies and performance. However, at these high operating temperatures, environmentally ingested airborne sand/ash particles melt on the hot TBC surfaces and form calcium–magnesium–aluminosilicate (CMAS) glass deposits. The molten CMAS glass penetrates the TBCs, leading to loss of strain tolerance and TBC failure. Here we demonstrate the use of the commercial manufacturing method of air-plasma-spray (APS) to fabricate CMAS-resistant yttria-stabilized zirconia (YSZ)-based TBCs containing Al and Ti in solid solution. Results from thermal stability studies of these new TBCs and CMAS/TBC interaction experiments are presented, together with a discussion of the CMAS mitigation mechanisms. The ubiquity of airborne sand/ash particles and the ever-increasing demand for higher operating temperatures in future high efficiency/performance gas-turbine engines will necessitate CMAS resistance in all hot-section components of those engines. In this context the versatility, ease of processing, and low cost offered by the APS method has broad implications for the design and fabrication of next-generation CMAS-resistant TBCs for future engines.
doi_str_mv 10.1016/j.actamat.2010.09.013
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_831192350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645410005781</els_id><sourcerecordid>831192350</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-a9071c09ae1577d5332f352e8f0d0ea46f19e134032fadb27b7242240a0819303</originalsourceid><addsrcrecordid>eNqFkEtLw0AQx4MoWKsfQdibp9TZR5rmJKX4goIXPS_TzaTdmjRxZyv027ulvXuaYf4PmF-W3UuYSJDTx-0EXcQO40RBukE1AakvspGclTpXptCXaddFlU9NYa6zG-YtgFSlgVHWzn3Ihxa5w5yHgAeqRdxQ6LAVKwzBUxCux-h3a04CRoGBRCD2HHEXRezFxq83eaRuoIBxn1SMEd23WB3EOhXzQdQ09Owj32ZXDbZMd-c5zr5enj8Xb_ny4_V9MV_mThsZc6yglA4qJFmUZV1orRpdKJo1UAOhmTayIqkNpDvWK1WuSmWUMoAwk5UGPc4eTr1D6H_2xNF2nh21Le6o37OdaSkrpYujszg5XeiZAzV2CL7DcLAS7BGu3dozXHuEa6GyCW7KPZ1ylN74TZAsO087R7UP5KKte_9Pwx9SbYac</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>831192350</pqid></control><display><type>article</type><title>Air-plasma-sprayed thermal barrier coatings that are resistant to high-temperature attack by glassy deposits</title><source>ScienceDirect Journals</source><creator>Drexler, Julie M. ; Shinoda, Kentaro ; Ortiz, Angel L. ; Li, Dongsheng ; Vasiliev, Alexander L. ; Gledhill, Andrew D. ; Sampath, Sanjay ; Padture, Nitin P.</creator><creatorcontrib>Drexler, Julie M. ; Shinoda, Kentaro ; Ortiz, Angel L. ; Li, Dongsheng ; Vasiliev, Alexander L. ; Gledhill, Andrew D. ; Sampath, Sanjay ; Padture, Nitin P.</creatorcontrib><description>Thermal barrier coatings (TBCs) used in gas-turbine engines afford higher operating temperatures, resulting in enhanced efficiencies and performance. However, at these high operating temperatures, environmentally ingested airborne sand/ash particles melt on the hot TBC surfaces and form calcium–magnesium–aluminosilicate (CMAS) glass deposits. The molten CMAS glass penetrates the TBCs, leading to loss of strain tolerance and TBC failure. Here we demonstrate the use of the commercial manufacturing method of air-plasma-spray (APS) to fabricate CMAS-resistant yttria-stabilized zirconia (YSZ)-based TBCs containing Al and Ti in solid solution. Results from thermal stability studies of these new TBCs and CMAS/TBC interaction experiments are presented, together with a discussion of the CMAS mitigation mechanisms. The ubiquity of airborne sand/ash particles and the ever-increasing demand for higher operating temperatures in future high efficiency/performance gas-turbine engines will necessitate CMAS resistance in all hot-section components of those engines. In this context the versatility, ease of processing, and low cost offered by the APS method has broad implications for the design and fabrication of next-generation CMAS-resistant TBCs for future engines.</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2010.09.013</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Anorthite ; Ashes ; Crystallization ; Deposition ; Engines ; Gas turbine engines ; Glass ; Operating temperature ; Sand ; Thermal barrier coatings ; Yttria stabilized zirconia ; Zirconia</subject><ispartof>Acta materialia, 2010-12, Vol.58 (20), p.6835-6844</ispartof><rights>2010 Acta Materialia Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-a9071c09ae1577d5332f352e8f0d0ea46f19e134032fadb27b7242240a0819303</citedby><cites>FETCH-LOGICAL-c341t-a9071c09ae1577d5332f352e8f0d0ea46f19e134032fadb27b7242240a0819303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Drexler, Julie M.</creatorcontrib><creatorcontrib>Shinoda, Kentaro</creatorcontrib><creatorcontrib>Ortiz, Angel L.</creatorcontrib><creatorcontrib>Li, Dongsheng</creatorcontrib><creatorcontrib>Vasiliev, Alexander L.</creatorcontrib><creatorcontrib>Gledhill, Andrew D.</creatorcontrib><creatorcontrib>Sampath, Sanjay</creatorcontrib><creatorcontrib>Padture, Nitin P.</creatorcontrib><title>Air-plasma-sprayed thermal barrier coatings that are resistant to high-temperature attack by glassy deposits</title><title>Acta materialia</title><description>Thermal barrier coatings (TBCs) used in gas-turbine engines afford higher operating temperatures, resulting in enhanced efficiencies and performance. However, at these high operating temperatures, environmentally ingested airborne sand/ash particles melt on the hot TBC surfaces and form calcium–magnesium–aluminosilicate (CMAS) glass deposits. The molten CMAS glass penetrates the TBCs, leading to loss of strain tolerance and TBC failure. Here we demonstrate the use of the commercial manufacturing method of air-plasma-spray (APS) to fabricate CMAS-resistant yttria-stabilized zirconia (YSZ)-based TBCs containing Al and Ti in solid solution. Results from thermal stability studies of these new TBCs and CMAS/TBC interaction experiments are presented, together with a discussion of the CMAS mitigation mechanisms. The ubiquity of airborne sand/ash particles and the ever-increasing demand for higher operating temperatures in future high efficiency/performance gas-turbine engines will necessitate CMAS resistance in all hot-section components of those engines. In this context the versatility, ease of processing, and low cost offered by the APS method has broad implications for the design and fabrication of next-generation CMAS-resistant TBCs for future engines.</description><subject>Anorthite</subject><subject>Ashes</subject><subject>Crystallization</subject><subject>Deposition</subject><subject>Engines</subject><subject>Gas turbine engines</subject><subject>Glass</subject><subject>Operating temperature</subject><subject>Sand</subject><subject>Thermal barrier coatings</subject><subject>Yttria stabilized zirconia</subject><subject>Zirconia</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLw0AQx4MoWKsfQdibp9TZR5rmJKX4goIXPS_TzaTdmjRxZyv027ulvXuaYf4PmF-W3UuYSJDTx-0EXcQO40RBukE1AakvspGclTpXptCXaddFlU9NYa6zG-YtgFSlgVHWzn3Ihxa5w5yHgAeqRdxQ6LAVKwzBUxCux-h3a04CRoGBRCD2HHEXRezFxq83eaRuoIBxn1SMEd23WB3EOhXzQdQ09Owj32ZXDbZMd-c5zr5enj8Xb_ny4_V9MV_mThsZc6yglA4qJFmUZV1orRpdKJo1UAOhmTayIqkNpDvWK1WuSmWUMoAwk5UGPc4eTr1D6H_2xNF2nh21Le6o37OdaSkrpYujszg5XeiZAzV2CL7DcLAS7BGu3dozXHuEa6GyCW7KPZ1ylN74TZAsO087R7UP5KKte_9Pwx9SbYac</recordid><startdate>20101201</startdate><enddate>20101201</enddate><creator>Drexler, Julie M.</creator><creator>Shinoda, Kentaro</creator><creator>Ortiz, Angel L.</creator><creator>Li, Dongsheng</creator><creator>Vasiliev, Alexander L.</creator><creator>Gledhill, Andrew D.</creator><creator>Sampath, Sanjay</creator><creator>Padture, Nitin P.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20101201</creationdate><title>Air-plasma-sprayed thermal barrier coatings that are resistant to high-temperature attack by glassy deposits</title><author>Drexler, Julie M. ; Shinoda, Kentaro ; Ortiz, Angel L. ; Li, Dongsheng ; Vasiliev, Alexander L. ; Gledhill, Andrew D. ; Sampath, Sanjay ; Padture, Nitin P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-a9071c09ae1577d5332f352e8f0d0ea46f19e134032fadb27b7242240a0819303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Anorthite</topic><topic>Ashes</topic><topic>Crystallization</topic><topic>Deposition</topic><topic>Engines</topic><topic>Gas turbine engines</topic><topic>Glass</topic><topic>Operating temperature</topic><topic>Sand</topic><topic>Thermal barrier coatings</topic><topic>Yttria stabilized zirconia</topic><topic>Zirconia</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Drexler, Julie M.</creatorcontrib><creatorcontrib>Shinoda, Kentaro</creatorcontrib><creatorcontrib>Ortiz, Angel L.</creatorcontrib><creatorcontrib>Li, Dongsheng</creatorcontrib><creatorcontrib>Vasiliev, Alexander L.</creatorcontrib><creatorcontrib>Gledhill, Andrew D.</creatorcontrib><creatorcontrib>Sampath, Sanjay</creatorcontrib><creatorcontrib>Padture, Nitin P.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Drexler, Julie M.</au><au>Shinoda, Kentaro</au><au>Ortiz, Angel L.</au><au>Li, Dongsheng</au><au>Vasiliev, Alexander L.</au><au>Gledhill, Andrew D.</au><au>Sampath, Sanjay</au><au>Padture, Nitin P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Air-plasma-sprayed thermal barrier coatings that are resistant to high-temperature attack by glassy deposits</atitle><jtitle>Acta materialia</jtitle><date>2010-12-01</date><risdate>2010</risdate><volume>58</volume><issue>20</issue><spage>6835</spage><epage>6844</epage><pages>6835-6844</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>Thermal barrier coatings (TBCs) used in gas-turbine engines afford higher operating temperatures, resulting in enhanced efficiencies and performance. However, at these high operating temperatures, environmentally ingested airborne sand/ash particles melt on the hot TBC surfaces and form calcium–magnesium–aluminosilicate (CMAS) glass deposits. The molten CMAS glass penetrates the TBCs, leading to loss of strain tolerance and TBC failure. Here we demonstrate the use of the commercial manufacturing method of air-plasma-spray (APS) to fabricate CMAS-resistant yttria-stabilized zirconia (YSZ)-based TBCs containing Al and Ti in solid solution. Results from thermal stability studies of these new TBCs and CMAS/TBC interaction experiments are presented, together with a discussion of the CMAS mitigation mechanisms. The ubiquity of airborne sand/ash particles and the ever-increasing demand for higher operating temperatures in future high efficiency/performance gas-turbine engines will necessitate CMAS resistance in all hot-section components of those engines. In this context the versatility, ease of processing, and low cost offered by the APS method has broad implications for the design and fabrication of next-generation CMAS-resistant TBCs for future engines.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2010.09.013</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1359-6454
ispartof Acta materialia, 2010-12, Vol.58 (20), p.6835-6844
issn 1359-6454
1873-2453
language eng
recordid cdi_proquest_miscellaneous_831192350
source ScienceDirect Journals
subjects Anorthite
Ashes
Crystallization
Deposition
Engines
Gas turbine engines
Glass
Operating temperature
Sand
Thermal barrier coatings
Yttria stabilized zirconia
Zirconia
title Air-plasma-sprayed thermal barrier coatings that are resistant to high-temperature attack by glassy deposits
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A48%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Air-plasma-sprayed%20thermal%20barrier%20coatings%20that%20are%20resistant%20to%20high-temperature%20attack%20by%20glassy%20deposits&rft.jtitle=Acta%20materialia&rft.au=Drexler,%20Julie%20M.&rft.date=2010-12-01&rft.volume=58&rft.issue=20&rft.spage=6835&rft.epage=6844&rft.pages=6835-6844&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2010.09.013&rft_dat=%3Cproquest_cross%3E831192350%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c341t-a9071c09ae1577d5332f352e8f0d0ea46f19e134032fadb27b7242240a0819303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=831192350&rft_id=info:pmid/&rfr_iscdi=true