Loading…
Artificial Neural Network for Predicting Creep and Shrinkage of High Performance Concrete
Concrete undergoes time-dependent deformations that must be considered in the design of reinforced/prestressed high-performance concrete (HPC) bridge girders. In this research, experiments on the creep and shrinkage properties of a HPC mix were conducted for 500 days. The test results obtained from...
Saved in:
Published in: | Journal of Advanced Concrete Technology 2008, Vol.6(1), pp.135-142 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Concrete undergoes time-dependent deformations that must be considered in the design of reinforced/prestressed high-performance concrete (HPC) bridge girders. In this research, experiments on the creep and shrinkage properties of a HPC mix were conducted for 500 days. The test results obtained from this research were compared to different models to determine which model was the better one. The CEB-90 model was found better in predicting time-dependent strains and deformations for the above HPC mix. However, in a far zone, some deviation was observed, and to get a better model, the experimental data base was used along with the CEB-90 model database to train the neural network. The developed Artificial Neural Network (ANN) model will serve as a more rational as well as computationally efficient model in predicting creep coefficient and shrinkage strain. |
---|---|
ISSN: | 1346-8014 1347-3913 1347-3913 |
DOI: | 10.3151/jact.6.135 |