Loading…
The approach of a sphere to a wall at finite Reynolds number
The approach to a wall of a non-Brownian rigid spherical particle, settling in a viscous fluid with a Reynolds number of the order of unity, is studied experimentally. Far from the wall, the fluid motion around the particle is driven by inertia and viscosity forces. The particle Stokes number is als...
Saved in:
Published in: | Journal of fluid mechanics 2010-10, Vol.661, p.229-238 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c449t-22ae8ba636ed6f592052c2adf091255f341b33d47cedc2611a6bf74cb4b616c53 |
---|---|
cites | cdi_FETCH-LOGICAL-c449t-22ae8ba636ed6f592052c2adf091255f341b33d47cedc2611a6bf74cb4b616c53 |
container_end_page | 238 |
container_issue | |
container_start_page | 229 |
container_title | Journal of fluid mechanics |
container_volume | 661 |
creator | MONGRUEL, A. LAMRIBEN, C. YAHIAOUI, S. FEUILLEBOIS, F. |
description | The approach to a wall of a non-Brownian rigid spherical particle, settling in a viscous fluid with a Reynolds number of the order of unity, is studied experimentally. Far from the wall, the fluid motion around the particle is driven by inertia and viscosity forces. The particle Stokes number is also of the order of unity, so that the particle motion far from the wall is driven by inertia. In the close vicinity of the wall, however, the particle–wall hydrodynamic interaction decelerates the particle significantly. An interferometric device is used to measure the vertical displacement of a millimetric size spherical bead at distances from the wall smaller than 0.1 sphere radius, with a spatial resolution of 100 nm. For the range of impact Stokes number (St*, based on the limit velocity of the sphere in an unbounded fluid) explored here (up to St* ≅ 5), the measurements reveal that a small region of negligible particle inertia still exists just prior to contact of the sphere with the wall. In this lubrication-like region, the particle velocity decreases linearly with decreasing particle–wall distance and vanishes at contact, ruling out the possibility of a rebound. The vertical extent of this region decreases with increasing Stokes number and is e.g. only 10 μm large at impact Stokes number St* ≅ 5. |
doi_str_mv | 10.1017/S0022112010003459 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_831209134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0022112010003459</cupid><sourcerecordid>1642234172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-22ae8ba636ed6f592052c2adf091255f341b33d47cedc2611a6bf74cb4b616c53</originalsourceid><addsrcrecordid>eNp9kFtrFEEQhZug4Br9Ab41gpiXiVV93QFfJOQGETGJeW1qerqzE2dnNt2zJPn39rJLBEWfquB8VXVOMfYO4RAB7acrACEQBSAASKXrPTZDZerKGqVfsNlGrjb6K_Y65zsAlFDbGft8vQicVqs0kl_wMXLiebUIKfBpLP0D9T2nicdu6KbAL8PTMPZt5sN62YT0hr2M1Ofwdlf32Y-T4-ujs-ri2-n50ZeLyitVT5UQFOYNGWlCa6KuBWjhBbURahRaR6mwkbJV1ofWC4NIpolW-UY1Bo3Xcp993O4tNu_XIU9u2WUf-p6GMK6zm8sSrEapCnnwXxKNEqLcs6Kg7_9A78Z1GkoOZ7UBAQJlgXAL-TTmnEJ0q9QtKT05BLd5vPvr8WXmw24xZU99TDT4Lj8PClnuK7nhqi3X5Sk8PuuUfjpjpdXOnH53X2-u5mAvtbspvNx5oWWTuvY2_Hb8bze_AGB1nTs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>756020213</pqid></control><display><type>article</type><title>The approach of a sphere to a wall at finite Reynolds number</title><source>Cambridge University Press</source><creator>MONGRUEL, A. ; LAMRIBEN, C. ; YAHIAOUI, S. ; FEUILLEBOIS, F.</creator><creatorcontrib>MONGRUEL, A. ; LAMRIBEN, C. ; YAHIAOUI, S. ; FEUILLEBOIS, F.</creatorcontrib><description>The approach to a wall of a non-Brownian rigid spherical particle, settling in a viscous fluid with a Reynolds number of the order of unity, is studied experimentally. Far from the wall, the fluid motion around the particle is driven by inertia and viscosity forces. The particle Stokes number is also of the order of unity, so that the particle motion far from the wall is driven by inertia. In the close vicinity of the wall, however, the particle–wall hydrodynamic interaction decelerates the particle significantly. An interferometric device is used to measure the vertical displacement of a millimetric size spherical bead at distances from the wall smaller than 0.1 sphere radius, with a spatial resolution of 100 nm. For the range of impact Stokes number (St*, based on the limit velocity of the sphere in an unbounded fluid) explored here (up to St* ≅ 5), the measurements reveal that a small region of negligible particle inertia still exists just prior to contact of the sphere with the wall. In this lubrication-like region, the particle velocity decreases linearly with decreasing particle–wall distance and vanishes at contact, ruling out the possibility of a rebound. The vertical extent of this region decreases with increasing Stokes number and is e.g. only 10 μm large at impact Stokes number St* ≅ 5.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/S0022112010003459</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Contact ; Exact sciences and technology ; Flow velocity ; Fluid dynamics ; Fluid flow ; Fluid mechanics ; Fluids ; Fundamental areas of phenomenology (including applications) ; Inertia ; Multiphase and particle-laden flows ; Nonhomogeneous flows ; particle/fluid flow ; Physics ; Reynolds number ; Spheres ; Stokes number ; Unity ; Walls</subject><ispartof>Journal of fluid mechanics, 2010-10, Vol.661, p.229-238</ispartof><rights>Copyright © Cambridge University Press 2010</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-22ae8ba636ed6f592052c2adf091255f341b33d47cedc2611a6bf74cb4b616c53</citedby><cites>FETCH-LOGICAL-c449t-22ae8ba636ed6f592052c2adf091255f341b33d47cedc2611a6bf74cb4b616c53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112010003459/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,72730</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23341439$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>MONGRUEL, A.</creatorcontrib><creatorcontrib>LAMRIBEN, C.</creatorcontrib><creatorcontrib>YAHIAOUI, S.</creatorcontrib><creatorcontrib>FEUILLEBOIS, F.</creatorcontrib><title>The approach of a sphere to a wall at finite Reynolds number</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>The approach to a wall of a non-Brownian rigid spherical particle, settling in a viscous fluid with a Reynolds number of the order of unity, is studied experimentally. Far from the wall, the fluid motion around the particle is driven by inertia and viscosity forces. The particle Stokes number is also of the order of unity, so that the particle motion far from the wall is driven by inertia. In the close vicinity of the wall, however, the particle–wall hydrodynamic interaction decelerates the particle significantly. An interferometric device is used to measure the vertical displacement of a millimetric size spherical bead at distances from the wall smaller than 0.1 sphere radius, with a spatial resolution of 100 nm. For the range of impact Stokes number (St*, based on the limit velocity of the sphere in an unbounded fluid) explored here (up to St* ≅ 5), the measurements reveal that a small region of negligible particle inertia still exists just prior to contact of the sphere with the wall. In this lubrication-like region, the particle velocity decreases linearly with decreasing particle–wall distance and vanishes at contact, ruling out the possibility of a rebound. The vertical extent of this region decreases with increasing Stokes number and is e.g. only 10 μm large at impact Stokes number St* ≅ 5.</description><subject>Contact</subject><subject>Exact sciences and technology</subject><subject>Flow velocity</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Fluids</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Inertia</subject><subject>Multiphase and particle-laden flows</subject><subject>Nonhomogeneous flows</subject><subject>particle/fluid flow</subject><subject>Physics</subject><subject>Reynolds number</subject><subject>Spheres</subject><subject>Stokes number</subject><subject>Unity</subject><subject>Walls</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kFtrFEEQhZug4Br9Ab41gpiXiVV93QFfJOQGETGJeW1qerqzE2dnNt2zJPn39rJLBEWfquB8VXVOMfYO4RAB7acrACEQBSAASKXrPTZDZerKGqVfsNlGrjb6K_Y65zsAlFDbGft8vQicVqs0kl_wMXLiebUIKfBpLP0D9T2nicdu6KbAL8PTMPZt5sN62YT0hr2M1Ofwdlf32Y-T4-ujs-ri2-n50ZeLyitVT5UQFOYNGWlCa6KuBWjhBbURahRaR6mwkbJV1ofWC4NIpolW-UY1Bo3Xcp993O4tNu_XIU9u2WUf-p6GMK6zm8sSrEapCnnwXxKNEqLcs6Kg7_9A78Z1GkoOZ7UBAQJlgXAL-TTmnEJ0q9QtKT05BLd5vPvr8WXmw24xZU99TDT4Lj8PClnuK7nhqi3X5Sk8PuuUfjpjpdXOnH53X2-u5mAvtbspvNx5oWWTuvY2_Hb8bze_AGB1nTs</recordid><startdate>20101025</startdate><enddate>20101025</enddate><creator>MONGRUEL, A.</creator><creator>LAMRIBEN, C.</creator><creator>YAHIAOUI, S.</creator><creator>FEUILLEBOIS, F.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20101025</creationdate><title>The approach of a sphere to a wall at finite Reynolds number</title><author>MONGRUEL, A. ; LAMRIBEN, C. ; YAHIAOUI, S. ; FEUILLEBOIS, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-22ae8ba636ed6f592052c2adf091255f341b33d47cedc2611a6bf74cb4b616c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Contact</topic><topic>Exact sciences and technology</topic><topic>Flow velocity</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Fluids</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Inertia</topic><topic>Multiphase and particle-laden flows</topic><topic>Nonhomogeneous flows</topic><topic>particle/fluid flow</topic><topic>Physics</topic><topic>Reynolds number</topic><topic>Spheres</topic><topic>Stokes number</topic><topic>Unity</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MONGRUEL, A.</creatorcontrib><creatorcontrib>LAMRIBEN, C.</creatorcontrib><creatorcontrib>YAHIAOUI, S.</creatorcontrib><creatorcontrib>FEUILLEBOIS, F.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MONGRUEL, A.</au><au>LAMRIBEN, C.</au><au>YAHIAOUI, S.</au><au>FEUILLEBOIS, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The approach of a sphere to a wall at finite Reynolds number</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2010-10-25</date><risdate>2010</risdate><volume>661</volume><spage>229</spage><epage>238</epage><pages>229-238</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>The approach to a wall of a non-Brownian rigid spherical particle, settling in a viscous fluid with a Reynolds number of the order of unity, is studied experimentally. Far from the wall, the fluid motion around the particle is driven by inertia and viscosity forces. The particle Stokes number is also of the order of unity, so that the particle motion far from the wall is driven by inertia. In the close vicinity of the wall, however, the particle–wall hydrodynamic interaction decelerates the particle significantly. An interferometric device is used to measure the vertical displacement of a millimetric size spherical bead at distances from the wall smaller than 0.1 sphere radius, with a spatial resolution of 100 nm. For the range of impact Stokes number (St*, based on the limit velocity of the sphere in an unbounded fluid) explored here (up to St* ≅ 5), the measurements reveal that a small region of negligible particle inertia still exists just prior to contact of the sphere with the wall. In this lubrication-like region, the particle velocity decreases linearly with decreasing particle–wall distance and vanishes at contact, ruling out the possibility of a rebound. The vertical extent of this region decreases with increasing Stokes number and is e.g. only 10 μm large at impact Stokes number St* ≅ 5.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0022112010003459</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2010-10, Vol.661, p.229-238 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_miscellaneous_831209134 |
source | Cambridge University Press |
subjects | Contact Exact sciences and technology Flow velocity Fluid dynamics Fluid flow Fluid mechanics Fluids Fundamental areas of phenomenology (including applications) Inertia Multiphase and particle-laden flows Nonhomogeneous flows particle/fluid flow Physics Reynolds number Spheres Stokes number Unity Walls |
title | The approach of a sphere to a wall at finite Reynolds number |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T22%3A20%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20approach%20of%20a%20sphere%20to%20a%20wall%20at%20finite%20Reynolds%20number&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=MONGRUEL,%20A.&rft.date=2010-10-25&rft.volume=661&rft.spage=229&rft.epage=238&rft.pages=229-238&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/S0022112010003459&rft_dat=%3Cproquest_cross%3E1642234172%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c449t-22ae8ba636ed6f592052c2adf091255f341b33d47cedc2611a6bf74cb4b616c53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=756020213&rft_id=info:pmid/&rft_cupid=10_1017_S0022112010003459&rfr_iscdi=true |