Loading…
Application of ultrasound in electrochemistry. An overview of mechanisms and design of experimental arrangement
An overview of possible mechanisms by which sonication can influence electrochemical processes is given. Four mechanisms are discussed: – acoustic streaming; – microstreaming and turbulence due to cavitation; – formation of microjets in the course of collapse of cavitation bubble; – shock waves; and...
Saved in:
Published in: | Ultrasonics 2011-02, Vol.51 (2), p.202-209 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c423t-64739c313e23777446e9cbace4f61acbfed7312e6db527053bc1a5abe30ff5043 |
---|---|
cites | cdi_FETCH-LOGICAL-c423t-64739c313e23777446e9cbace4f61acbfed7312e6db527053bc1a5abe30ff5043 |
container_end_page | 209 |
container_issue | 2 |
container_start_page | 202 |
container_title | Ultrasonics |
container_volume | 51 |
creator | Klima, J. |
description | An overview of possible mechanisms by which sonication can influence electrochemical processes is given. Four mechanisms are discussed:
–
acoustic streaming;
–
microstreaming and turbulence due to cavitation;
–
formation of microjets in the course of collapse of cavitation bubble;
–
shock waves;
and possible effects are illustrated on several examples. The most effective process is formation of microjets, which can not only decrease diffusion layer thickness under 1
μm, but also activate (depassivate) electrode surface. Design of experimental arrangement with maximum participation of microjets is proposed. Two approaches are proposed:
–
focusing of ultrasound on the working electrode and reduction of energy losses by over-pressure;
–
“tuning” the reactor to obtain resonance, i.e. formation of stationary waves by activating reactor in its resonant mode. |
doi_str_mv | 10.1016/j.ultras.2010.08.004 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_831209252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0041624X10001174</els_id><sourcerecordid>831209252</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-64739c313e23777446e9cbace4f61acbfed7312e6db527053bc1a5abe30ff5043</originalsourceid><addsrcrecordid>eNqFkUtv1TAQhS0Eope2_wChbBCrhPEjsbOpdFUVWqkSG5DYWY4zaX2VxKmd9PHv69tcyg5W1oy-czwzh5CPFAoKtPq6K5Z-DiYWDFILVAEg3pANVVLkdV2pt2STOjSvmPh9RD7EuAOgQlH-nhwxUCDqWm6I305T76yZnR8z32Wrp1_GNnNjhj3aOXh7i4OLc3gqsm2i7jHcO3zY4wPaWzO6OMTMJEmL0d28-ODjhMENOM6mz0wIZrzBfXVC3nWmj3h6eI_Jr28XP88v8-sf36_Ot9e5FYzPeSUkry2nHBmXUgpRYW0bY1F0FTW26bCVnDKs2qZkEkreWGpK0yCHritB8GPyZfWdgr9bMM46bWCx782IfolaJTXUrGT_JymjXApKEylW0gYfY8BOT2lFE540Bb3PRO_0ej-9z0SD0vAyyqfDB0szYPsq-hNCAj4fABOt6bt0LOviX44rDkqWiTtbOUyHSwkEHa3D0WLrQspJt979e5JnOXWuag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>812137411</pqid></control><display><type>article</type><title>Application of ultrasound in electrochemistry. An overview of mechanisms and design of experimental arrangement</title><source>ScienceDirect Journals</source><creator>Klima, J.</creator><creatorcontrib>Klima, J.</creatorcontrib><description>An overview of possible mechanisms by which sonication can influence electrochemical processes is given. Four mechanisms are discussed:
–
acoustic streaming;
–
microstreaming and turbulence due to cavitation;
–
formation of microjets in the course of collapse of cavitation bubble;
–
shock waves;
and possible effects are illustrated on several examples. The most effective process is formation of microjets, which can not only decrease diffusion layer thickness under 1
μm, but also activate (depassivate) electrode surface. Design of experimental arrangement with maximum participation of microjets is proposed. Two approaches are proposed:
–
focusing of ultrasound on the working electrode and reduction of energy losses by over-pressure;
–
“tuning” the reactor to obtain resonance, i.e. formation of stationary waves by activating reactor in its resonant mode.</description><identifier>ISSN: 0041-624X</identifier><identifier>EISSN: 1874-9968</identifier><identifier>DOI: 10.1016/j.ultras.2010.08.004</identifier><identifier>PMID: 20804997</identifier><identifier>CODEN: ULTRA3</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Acoustic streaming ; Acoustics ; Chemistry ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; General and physical chemistry ; Mechanism of sonochemical effect ; Microjets ; Nonlinear acoustics, macrosonics ; Physical chemistry of induced reactions (with radiations, particles and ultrasonics) ; Physics ; Sono-electrochemical cell design ; Sonoelectrochemistry ; Ultrasonic chemistry ; Underwater sound</subject><ispartof>Ultrasonics, 2011-02, Vol.51 (2), p.202-209</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2010 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-64739c313e23777446e9cbace4f61acbfed7312e6db527053bc1a5abe30ff5043</citedby><cites>FETCH-LOGICAL-c423t-64739c313e23777446e9cbace4f61acbfed7312e6db527053bc1a5abe30ff5043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23830875$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20804997$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Klima, J.</creatorcontrib><title>Application of ultrasound in electrochemistry. An overview of mechanisms and design of experimental arrangement</title><title>Ultrasonics</title><addtitle>Ultrasonics</addtitle><description>An overview of possible mechanisms by which sonication can influence electrochemical processes is given. Four mechanisms are discussed:
–
acoustic streaming;
–
microstreaming and turbulence due to cavitation;
–
formation of microjets in the course of collapse of cavitation bubble;
–
shock waves;
and possible effects are illustrated on several examples. The most effective process is formation of microjets, which can not only decrease diffusion layer thickness under 1
μm, but also activate (depassivate) electrode surface. Design of experimental arrangement with maximum participation of microjets is proposed. Two approaches are proposed:
–
focusing of ultrasound on the working electrode and reduction of energy losses by over-pressure;
–
“tuning” the reactor to obtain resonance, i.e. formation of stationary waves by activating reactor in its resonant mode.</description><subject>Acoustic streaming</subject><subject>Acoustics</subject><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>General and physical chemistry</subject><subject>Mechanism of sonochemical effect</subject><subject>Microjets</subject><subject>Nonlinear acoustics, macrosonics</subject><subject>Physical chemistry of induced reactions (with radiations, particles and ultrasonics)</subject><subject>Physics</subject><subject>Sono-electrochemical cell design</subject><subject>Sonoelectrochemistry</subject><subject>Ultrasonic chemistry</subject><subject>Underwater sound</subject><issn>0041-624X</issn><issn>1874-9968</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkUtv1TAQhS0Eope2_wChbBCrhPEjsbOpdFUVWqkSG5DYWY4zaX2VxKmd9PHv69tcyg5W1oy-czwzh5CPFAoKtPq6K5Z-DiYWDFILVAEg3pANVVLkdV2pt2STOjSvmPh9RD7EuAOgQlH-nhwxUCDqWm6I305T76yZnR8z32Wrp1_GNnNjhj3aOXh7i4OLc3gqsm2i7jHcO3zY4wPaWzO6OMTMJEmL0d28-ODjhMENOM6mz0wIZrzBfXVC3nWmj3h6eI_Jr28XP88v8-sf36_Ot9e5FYzPeSUkry2nHBmXUgpRYW0bY1F0FTW26bCVnDKs2qZkEkreWGpK0yCHritB8GPyZfWdgr9bMM46bWCx782IfolaJTXUrGT_JymjXApKEylW0gYfY8BOT2lFE540Bb3PRO_0ej-9z0SD0vAyyqfDB0szYPsq-hNCAj4fABOt6bt0LOviX44rDkqWiTtbOUyHSwkEHa3D0WLrQspJt979e5JnOXWuag</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Klima, J.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20110201</creationdate><title>Application of ultrasound in electrochemistry. An overview of mechanisms and design of experimental arrangement</title><author>Klima, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-64739c313e23777446e9cbace4f61acbfed7312e6db527053bc1a5abe30ff5043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acoustic streaming</topic><topic>Acoustics</topic><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>General and physical chemistry</topic><topic>Mechanism of sonochemical effect</topic><topic>Microjets</topic><topic>Nonlinear acoustics, macrosonics</topic><topic>Physical chemistry of induced reactions (with radiations, particles and ultrasonics)</topic><topic>Physics</topic><topic>Sono-electrochemical cell design</topic><topic>Sonoelectrochemistry</topic><topic>Ultrasonic chemistry</topic><topic>Underwater sound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klima, J.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Ultrasonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klima, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of ultrasound in electrochemistry. An overview of mechanisms and design of experimental arrangement</atitle><jtitle>Ultrasonics</jtitle><addtitle>Ultrasonics</addtitle><date>2011-02-01</date><risdate>2011</risdate><volume>51</volume><issue>2</issue><spage>202</spage><epage>209</epage><pages>202-209</pages><issn>0041-624X</issn><eissn>1874-9968</eissn><coden>ULTRA3</coden><abstract>An overview of possible mechanisms by which sonication can influence electrochemical processes is given. Four mechanisms are discussed:
–
acoustic streaming;
–
microstreaming and turbulence due to cavitation;
–
formation of microjets in the course of collapse of cavitation bubble;
–
shock waves;
and possible effects are illustrated on several examples. The most effective process is formation of microjets, which can not only decrease diffusion layer thickness under 1
μm, but also activate (depassivate) electrode surface. Design of experimental arrangement with maximum participation of microjets is proposed. Two approaches are proposed:
–
focusing of ultrasound on the working electrode and reduction of energy losses by over-pressure;
–
“tuning” the reactor to obtain resonance, i.e. formation of stationary waves by activating reactor in its resonant mode.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>20804997</pmid><doi>10.1016/j.ultras.2010.08.004</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0041-624X |
ispartof | Ultrasonics, 2011-02, Vol.51 (2), p.202-209 |
issn | 0041-624X 1874-9968 |
language | eng |
recordid | cdi_proquest_miscellaneous_831209252 |
source | ScienceDirect Journals |
subjects | Acoustic streaming Acoustics Chemistry Exact sciences and technology Fundamental areas of phenomenology (including applications) General and physical chemistry Mechanism of sonochemical effect Microjets Nonlinear acoustics, macrosonics Physical chemistry of induced reactions (with radiations, particles and ultrasonics) Physics Sono-electrochemical cell design Sonoelectrochemistry Ultrasonic chemistry Underwater sound |
title | Application of ultrasound in electrochemistry. An overview of mechanisms and design of experimental arrangement |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A57%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20ultrasound%20in%20electrochemistry.%20An%20overview%20of%20mechanisms%20and%20design%20of%20experimental%20arrangement&rft.jtitle=Ultrasonics&rft.au=Klima,%20J.&rft.date=2011-02-01&rft.volume=51&rft.issue=2&rft.spage=202&rft.epage=209&rft.pages=202-209&rft.issn=0041-624X&rft.eissn=1874-9968&rft.coden=ULTRA3&rft_id=info:doi/10.1016/j.ultras.2010.08.004&rft_dat=%3Cproquest_cross%3E831209252%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c423t-64739c313e23777446e9cbace4f61acbfed7312e6db527053bc1a5abe30ff5043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=812137411&rft_id=info:pmid/20804997&rfr_iscdi=true |