Loading…

Application of ultrasound in electrochemistry. An overview of mechanisms and design of experimental arrangement

An overview of possible mechanisms by which sonication can influence electrochemical processes is given. Four mechanisms are discussed: – acoustic streaming; – microstreaming and turbulence due to cavitation; – formation of microjets in the course of collapse of cavitation bubble; – shock waves; and...

Full description

Saved in:
Bibliographic Details
Published in:Ultrasonics 2011-02, Vol.51 (2), p.202-209
Main Author: Klima, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c423t-64739c313e23777446e9cbace4f61acbfed7312e6db527053bc1a5abe30ff5043
cites cdi_FETCH-LOGICAL-c423t-64739c313e23777446e9cbace4f61acbfed7312e6db527053bc1a5abe30ff5043
container_end_page 209
container_issue 2
container_start_page 202
container_title Ultrasonics
container_volume 51
creator Klima, J.
description An overview of possible mechanisms by which sonication can influence electrochemical processes is given. Four mechanisms are discussed: – acoustic streaming; – microstreaming and turbulence due to cavitation; – formation of microjets in the course of collapse of cavitation bubble; – shock waves; and possible effects are illustrated on several examples. The most effective process is formation of microjets, which can not only decrease diffusion layer thickness under 1 μm, but also activate (depassivate) electrode surface. Design of experimental arrangement with maximum participation of microjets is proposed. Two approaches are proposed: – focusing of ultrasound on the working electrode and reduction of energy losses by over-pressure; – “tuning” the reactor to obtain resonance, i.e. formation of stationary waves by activating reactor in its resonant mode.
doi_str_mv 10.1016/j.ultras.2010.08.004
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_831209252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0041624X10001174</els_id><sourcerecordid>831209252</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-64739c313e23777446e9cbace4f61acbfed7312e6db527053bc1a5abe30ff5043</originalsourceid><addsrcrecordid>eNqFkUtv1TAQhS0Eope2_wChbBCrhPEjsbOpdFUVWqkSG5DYWY4zaX2VxKmd9PHv69tcyg5W1oy-czwzh5CPFAoKtPq6K5Z-DiYWDFILVAEg3pANVVLkdV2pt2STOjSvmPh9RD7EuAOgQlH-nhwxUCDqWm6I305T76yZnR8z32Wrp1_GNnNjhj3aOXh7i4OLc3gqsm2i7jHcO3zY4wPaWzO6OMTMJEmL0d28-ODjhMENOM6mz0wIZrzBfXVC3nWmj3h6eI_Jr28XP88v8-sf36_Ot9e5FYzPeSUkry2nHBmXUgpRYW0bY1F0FTW26bCVnDKs2qZkEkreWGpK0yCHritB8GPyZfWdgr9bMM46bWCx782IfolaJTXUrGT_JymjXApKEylW0gYfY8BOT2lFE540Bb3PRO_0ej-9z0SD0vAyyqfDB0szYPsq-hNCAj4fABOt6bt0LOviX44rDkqWiTtbOUyHSwkEHa3D0WLrQspJt979e5JnOXWuag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>812137411</pqid></control><display><type>article</type><title>Application of ultrasound in electrochemistry. An overview of mechanisms and design of experimental arrangement</title><source>ScienceDirect Journals</source><creator>Klima, J.</creator><creatorcontrib>Klima, J.</creatorcontrib><description>An overview of possible mechanisms by which sonication can influence electrochemical processes is given. Four mechanisms are discussed: – acoustic streaming; – microstreaming and turbulence due to cavitation; – formation of microjets in the course of collapse of cavitation bubble; – shock waves; and possible effects are illustrated on several examples. The most effective process is formation of microjets, which can not only decrease diffusion layer thickness under 1 μm, but also activate (depassivate) electrode surface. Design of experimental arrangement with maximum participation of microjets is proposed. Two approaches are proposed: – focusing of ultrasound on the working electrode and reduction of energy losses by over-pressure; – “tuning” the reactor to obtain resonance, i.e. formation of stationary waves by activating reactor in its resonant mode.</description><identifier>ISSN: 0041-624X</identifier><identifier>EISSN: 1874-9968</identifier><identifier>DOI: 10.1016/j.ultras.2010.08.004</identifier><identifier>PMID: 20804997</identifier><identifier>CODEN: ULTRA3</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Acoustic streaming ; Acoustics ; Chemistry ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; General and physical chemistry ; Mechanism of sonochemical effect ; Microjets ; Nonlinear acoustics, macrosonics ; Physical chemistry of induced reactions (with radiations, particles and ultrasonics) ; Physics ; Sono-electrochemical cell design ; Sonoelectrochemistry ; Ultrasonic chemistry ; Underwater sound</subject><ispartof>Ultrasonics, 2011-02, Vol.51 (2), p.202-209</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2010 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-64739c313e23777446e9cbace4f61acbfed7312e6db527053bc1a5abe30ff5043</citedby><cites>FETCH-LOGICAL-c423t-64739c313e23777446e9cbace4f61acbfed7312e6db527053bc1a5abe30ff5043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23830875$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20804997$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Klima, J.</creatorcontrib><title>Application of ultrasound in electrochemistry. An overview of mechanisms and design of experimental arrangement</title><title>Ultrasonics</title><addtitle>Ultrasonics</addtitle><description>An overview of possible mechanisms by which sonication can influence electrochemical processes is given. Four mechanisms are discussed: – acoustic streaming; – microstreaming and turbulence due to cavitation; – formation of microjets in the course of collapse of cavitation bubble; – shock waves; and possible effects are illustrated on several examples. The most effective process is formation of microjets, which can not only decrease diffusion layer thickness under 1 μm, but also activate (depassivate) electrode surface. Design of experimental arrangement with maximum participation of microjets is proposed. Two approaches are proposed: – focusing of ultrasound on the working electrode and reduction of energy losses by over-pressure; – “tuning” the reactor to obtain resonance, i.e. formation of stationary waves by activating reactor in its resonant mode.</description><subject>Acoustic streaming</subject><subject>Acoustics</subject><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>General and physical chemistry</subject><subject>Mechanism of sonochemical effect</subject><subject>Microjets</subject><subject>Nonlinear acoustics, macrosonics</subject><subject>Physical chemistry of induced reactions (with radiations, particles and ultrasonics)</subject><subject>Physics</subject><subject>Sono-electrochemical cell design</subject><subject>Sonoelectrochemistry</subject><subject>Ultrasonic chemistry</subject><subject>Underwater sound</subject><issn>0041-624X</issn><issn>1874-9968</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkUtv1TAQhS0Eope2_wChbBCrhPEjsbOpdFUVWqkSG5DYWY4zaX2VxKmd9PHv69tcyg5W1oy-czwzh5CPFAoKtPq6K5Z-DiYWDFILVAEg3pANVVLkdV2pt2STOjSvmPh9RD7EuAOgQlH-nhwxUCDqWm6I305T76yZnR8z32Wrp1_GNnNjhj3aOXh7i4OLc3gqsm2i7jHcO3zY4wPaWzO6OMTMJEmL0d28-ODjhMENOM6mz0wIZrzBfXVC3nWmj3h6eI_Jr28XP88v8-sf36_Ot9e5FYzPeSUkry2nHBmXUgpRYW0bY1F0FTW26bCVnDKs2qZkEkreWGpK0yCHritB8GPyZfWdgr9bMM46bWCx782IfolaJTXUrGT_JymjXApKEylW0gYfY8BOT2lFE540Bb3PRO_0ej-9z0SD0vAyyqfDB0szYPsq-hNCAj4fABOt6bt0LOviX44rDkqWiTtbOUyHSwkEHa3D0WLrQspJt979e5JnOXWuag</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Klima, J.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20110201</creationdate><title>Application of ultrasound in electrochemistry. An overview of mechanisms and design of experimental arrangement</title><author>Klima, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-64739c313e23777446e9cbace4f61acbfed7312e6db527053bc1a5abe30ff5043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acoustic streaming</topic><topic>Acoustics</topic><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>General and physical chemistry</topic><topic>Mechanism of sonochemical effect</topic><topic>Microjets</topic><topic>Nonlinear acoustics, macrosonics</topic><topic>Physical chemistry of induced reactions (with radiations, particles and ultrasonics)</topic><topic>Physics</topic><topic>Sono-electrochemical cell design</topic><topic>Sonoelectrochemistry</topic><topic>Ultrasonic chemistry</topic><topic>Underwater sound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klima, J.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Ultrasonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klima, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of ultrasound in electrochemistry. An overview of mechanisms and design of experimental arrangement</atitle><jtitle>Ultrasonics</jtitle><addtitle>Ultrasonics</addtitle><date>2011-02-01</date><risdate>2011</risdate><volume>51</volume><issue>2</issue><spage>202</spage><epage>209</epage><pages>202-209</pages><issn>0041-624X</issn><eissn>1874-9968</eissn><coden>ULTRA3</coden><abstract>An overview of possible mechanisms by which sonication can influence electrochemical processes is given. Four mechanisms are discussed: – acoustic streaming; – microstreaming and turbulence due to cavitation; – formation of microjets in the course of collapse of cavitation bubble; – shock waves; and possible effects are illustrated on several examples. The most effective process is formation of microjets, which can not only decrease diffusion layer thickness under 1 μm, but also activate (depassivate) electrode surface. Design of experimental arrangement with maximum participation of microjets is proposed. Two approaches are proposed: – focusing of ultrasound on the working electrode and reduction of energy losses by over-pressure; – “tuning” the reactor to obtain resonance, i.e. formation of stationary waves by activating reactor in its resonant mode.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>20804997</pmid><doi>10.1016/j.ultras.2010.08.004</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0041-624X
ispartof Ultrasonics, 2011-02, Vol.51 (2), p.202-209
issn 0041-624X
1874-9968
language eng
recordid cdi_proquest_miscellaneous_831209252
source ScienceDirect Journals
subjects Acoustic streaming
Acoustics
Chemistry
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
General and physical chemistry
Mechanism of sonochemical effect
Microjets
Nonlinear acoustics, macrosonics
Physical chemistry of induced reactions (with radiations, particles and ultrasonics)
Physics
Sono-electrochemical cell design
Sonoelectrochemistry
Ultrasonic chemistry
Underwater sound
title Application of ultrasound in electrochemistry. An overview of mechanisms and design of experimental arrangement
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A57%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20ultrasound%20in%20electrochemistry.%20An%20overview%20of%20mechanisms%20and%20design%20of%20experimental%20arrangement&rft.jtitle=Ultrasonics&rft.au=Klima,%20J.&rft.date=2011-02-01&rft.volume=51&rft.issue=2&rft.spage=202&rft.epage=209&rft.pages=202-209&rft.issn=0041-624X&rft.eissn=1874-9968&rft.coden=ULTRA3&rft_id=info:doi/10.1016/j.ultras.2010.08.004&rft_dat=%3Cproquest_cross%3E831209252%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c423t-64739c313e23777446e9cbace4f61acbfed7312e6db527053bc1a5abe30ff5043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=812137411&rft_id=info:pmid/20804997&rfr_iscdi=true