Loading…
Physiological and biochemical aspects of hydroxylations and demethylations catalyzed by human 2-oxoglutarate oxygenases
Pioneering work in the 1960s defined prolyl and lysyl hydroxylations as physiologically important oxygenase-catalyzed modifications in collagen biosynthesis; subsequent studies demonstrated that extracellular epidermal growth factor-like domains were hydroxylated at aspartyl and asparaginyl residues...
Saved in:
Published in: | Trends in biochemical sciences (Amsterdam. Regular ed.) 2011, Vol.36 (1), p.7-18 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Pioneering work in the 1960s defined prolyl and lysyl hydroxylations as physiologically important oxygenase-catalyzed modifications in collagen biosynthesis; subsequent studies demonstrated that extracellular epidermal growth factor-like domains were hydroxylated at aspartyl and asparaginyl residues. More recent work on the hypoxia-sensing mechanism in animals has shown that prolyl and asparaginyl hydroxylation of the hypoxia-inducible transcription factor play central roles in sensing hypoxia, by regulating protein–protein interactions in an oxygen-dependent manner. The collective results imply that protein hydroxylation is more common than previously perceived. Most protein hydroxylases employ Fe(II) as a cofactor, and 2-oxoglutarate and oxygen as co-substrates. Related enzymes catalyze the demethylation of
N
ɛ-methyl lysine residues in histones and of
N-methylated nucleic acids, as well as hydroxylation of 5-methyl cytosine in DNA and 5-methoxycarbonylmethyluridine at the wobble position of tRNA. The combination of new molecular biological and analytical techniques is likely to reveal further roles for oxygenase-mediated modifications to biomacromolecules. |
---|---|
ISSN: | 0968-0004 1362-4326 |
DOI: | 10.1016/j.tibs.2010.07.002 |