Loading…
Rapid direct methods for enumeration of specific, active bacteria in water and biofilms
Conventional methods for detecting indicator and pathogenic bacteria in water may underestimate the actual population due to sublethal environmental injury, inability of the target bacteria to take up nutrients and other physiological factors which reduce bacterial culturability. Rapid and direct me...
Saved in:
Published in: | Journal of applied microbiology 1998-12, Vol.85 (S1), p.193S-200S |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Conventional methods for detecting indicator and pathogenic bacteria in water may underestimate the actual population due to sublethal environmental injury, inability of the target bacteria to take up nutrients and other physiological factors which reduce bacterial culturability. Rapid and direct methods are needed to more accurately detect and enumerate active bacteria. Such a methodological advance would provide greater sensitivity in assessing the microbiological safety of water and food. The principle goal of this presentation is to describe novel approaches we have formulated for the rapid and simultaneous detection of bacteria plus the determination of their physiological activity in water and other environmental samples. The present version of our method involves the concentration of organisms by membrane filtration or immunomagnetic separation and combines an intracellular fluorochrome (CTC) for assessment of respiratory activity plus fluorescent‐labelled antibody detection of specific bacteria. This approach has also been successfully used to demonstrate spatial and temporal heterogeneities of physiological activities in biofilms when coupled with cryosectioning. Candidate physiological stains include those capable of determining respiratory activity, membrane potential, membrane integrity, growth rate and cellular enzymatic activities. Results obtained thus far indicate that immunomagnetic separation can provide a high degree of sensitivity in the recovery of seeded target bacteria (Escherichia coli O157:H7) in water and hamburger. The captured and stained target bacteria are then enumerated by either conventional fluorescence microscopy or ChemScank, a new instrument that is very sensitive and rapid. The ChemScanR laser scanning instrument (Chemunex, Paris, France) provides the detection of individual fluorescently labelled bacterial cells using three emission channels in less than 5 min. A high degree of correlation has been demonstrated between results obtained with the ChemScan and traditional plate counts of mixed natural bacterial populations in water. The continuing evolution of these methods will be valuable in the rapid and accurate analysis of environmental samples. |
---|---|
ISSN: | 1364-5072 1365-2672 |
DOI: | 10.1111/j.1365-2672.1998.tb05299.x |