Loading…

Neural Networks in the Capital Markets: An Application to Index Forecasting

In this article we construct an Index of Austrian Initial Public Offerings (IPOX) which is isomorph to the Austrian Traded Index (ATX). Conjecturing that the ATX qualifies as an explaining variable for the IPOX, we investigate the time trend properties of and the comovement between the two indices....

Full description

Saved in:
Bibliographic Details
Published in:Computational economics 1996-02, Vol.9 (1), p.37-50
Main Authors: Haefke, Christian, Helmenstein, Christian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3070-93e2c4c830f020d760f1003d962268ee550f22438863ff345014b76ad15a139e3
cites cdi_FETCH-LOGICAL-c3070-93e2c4c830f020d760f1003d962268ee550f22438863ff345014b76ad15a139e3
container_end_page 50
container_issue 1
container_start_page 37
container_title Computational economics
container_volume 9
creator Haefke, Christian
Helmenstein, Christian
description In this article we construct an Index of Austrian Initial Public Offerings (IPOX) which is isomorph to the Austrian Traded Index (ATX). Conjecturing that the ATX qualifies as an explaining variable for the IPOX, we investigate the time trend properties of and the comovement between the two indices. We use the relationship to construct a neural network and a linear error-correction forecasting model of the IPOX and base a trading scheme on each forecast. The results suggest that trading based on the forecasts significantly increases an investor's return as compared to Buy and Hold or simple Moving Average trading strategies. Citation Copyright 1996 by Kluwer Academic Publishers.
doi_str_mv 10.1007/bf00115690
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_839051507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>839051507</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3070-93e2c4c830f020d760f1003d962268ee550f22438863ff345014b76ad15a139e3</originalsourceid><addsrcrecordid>eNo9kMFOwzAQRC0EEqVw4QtyQ0IKrO04jrmVipYKKBc4W66zoaFpEmwX6N_jqsBhNKvR02p3CDmncEUB5PWiAqBU5AoOyIAKyVKlZHZIBqCYTCUodUxOvH8HAEEZG5CHOW6caZI5hq_OrXxSt0lYYjI2fR1i_mTcCoO_SUZtMur7prYm1F1kumTWlvidTDqH1vhQt2-n5KgyjcezXx-S18ndy_g-fXyezsajx9RykJAqjsxmtuBQAYNS5lDF23mpcsbyAlEIqBjLeFHkvKp4JoBmC5mbkgpDuUI-JBf7vb3rPjbog17X3mLTmBa7jdcFV_E7ATKSl3vSus57h5XuXb02bqsp6F1h-nbyV1iEp3vYYY_2n1yZ3nbrXfKpuVFR2yiqVB6t3o1RfRSXWoBehjX_AdG6c3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>839051507</pqid></control><display><type>article</type><title>Neural Networks in the Capital Markets: An Application to Index Forecasting</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Springer LINK Archives</source><creator>Haefke, Christian ; Helmenstein, Christian</creator><creatorcontrib>Haefke, Christian ; Helmenstein, Christian</creatorcontrib><description>In this article we construct an Index of Austrian Initial Public Offerings (IPOX) which is isomorph to the Austrian Traded Index (ATX). Conjecturing that the ATX qualifies as an explaining variable for the IPOX, we investigate the time trend properties of and the comovement between the two indices. We use the relationship to construct a neural network and a linear error-correction forecasting model of the IPOX and base a trading scheme on each forecast. The results suggest that trading based on the forecasts significantly increases an investor's return as compared to Buy and Hold or simple Moving Average trading strategies. Citation Copyright 1996 by Kluwer Academic Publishers.</description><identifier>ISSN: 0927-7099</identifier><identifier>EISSN: 1572-9974</identifier><identifier>DOI: 10.1007/bf00115690</identifier><language>eng</language><publisher>Society for Computational Economics</publisher><subject>Capital market ; Financial economics ; Forecasts ; Public goods</subject><ispartof>Computational economics, 1996-02, Vol.9 (1), p.37-50</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3070-93e2c4c830f020d760f1003d962268ee550f22438863ff345014b76ad15a139e3</citedby><cites>FETCH-LOGICAL-c3070-93e2c4c830f020d760f1003d962268ee550f22438863ff345014b76ad15a139e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,33224</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/kapcompec/v_3a9_3ay_3a1996_3ai_3a1_3ap_3a37-50.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Haefke, Christian</creatorcontrib><creatorcontrib>Helmenstein, Christian</creatorcontrib><title>Neural Networks in the Capital Markets: An Application to Index Forecasting</title><title>Computational economics</title><description>In this article we construct an Index of Austrian Initial Public Offerings (IPOX) which is isomorph to the Austrian Traded Index (ATX). Conjecturing that the ATX qualifies as an explaining variable for the IPOX, we investigate the time trend properties of and the comovement between the two indices. We use the relationship to construct a neural network and a linear error-correction forecasting model of the IPOX and base a trading scheme on each forecast. The results suggest that trading based on the forecasts significantly increases an investor's return as compared to Buy and Hold or simple Moving Average trading strategies. Citation Copyright 1996 by Kluwer Academic Publishers.</description><subject>Capital market</subject><subject>Financial economics</subject><subject>Forecasts</subject><subject>Public goods</subject><issn>0927-7099</issn><issn>1572-9974</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNo9kMFOwzAQRC0EEqVw4QtyQ0IKrO04jrmVipYKKBc4W66zoaFpEmwX6N_jqsBhNKvR02p3CDmncEUB5PWiAqBU5AoOyIAKyVKlZHZIBqCYTCUodUxOvH8HAEEZG5CHOW6caZI5hq_OrXxSt0lYYjI2fR1i_mTcCoO_SUZtMur7prYm1F1kumTWlvidTDqH1vhQt2-n5KgyjcezXx-S18ndy_g-fXyezsajx9RykJAqjsxmtuBQAYNS5lDF23mpcsbyAlEIqBjLeFHkvKp4JoBmC5mbkgpDuUI-JBf7vb3rPjbog17X3mLTmBa7jdcFV_E7ATKSl3vSus57h5XuXb02bqsp6F1h-nbyV1iEp3vYYY_2n1yZ3nbrXfKpuVFR2yiqVB6t3o1RfRSXWoBehjX_AdG6c3Q</recordid><startdate>19960201</startdate><enddate>19960201</enddate><creator>Haefke, Christian</creator><creator>Helmenstein, Christian</creator><general>Society for Computational Economics</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>19960201</creationdate><title>Neural Networks in the Capital Markets: An Application to Index Forecasting</title><author>Haefke, Christian ; Helmenstein, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3070-93e2c4c830f020d760f1003d962268ee550f22438863ff345014b76ad15a139e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Capital market</topic><topic>Financial economics</topic><topic>Forecasts</topic><topic>Public goods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haefke, Christian</creatorcontrib><creatorcontrib>Helmenstein, Christian</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Computational economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haefke, Christian</au><au>Helmenstein, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural Networks in the Capital Markets: An Application to Index Forecasting</atitle><jtitle>Computational economics</jtitle><date>1996-02-01</date><risdate>1996</risdate><volume>9</volume><issue>1</issue><spage>37</spage><epage>50</epage><pages>37-50</pages><issn>0927-7099</issn><eissn>1572-9974</eissn><abstract>In this article we construct an Index of Austrian Initial Public Offerings (IPOX) which is isomorph to the Austrian Traded Index (ATX). Conjecturing that the ATX qualifies as an explaining variable for the IPOX, we investigate the time trend properties of and the comovement between the two indices. We use the relationship to construct a neural network and a linear error-correction forecasting model of the IPOX and base a trading scheme on each forecast. The results suggest that trading based on the forecasts significantly increases an investor's return as compared to Buy and Hold or simple Moving Average trading strategies. Citation Copyright 1996 by Kluwer Academic Publishers.</abstract><pub>Society for Computational Economics</pub><doi>10.1007/bf00115690</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0927-7099
ispartof Computational economics, 1996-02, Vol.9 (1), p.37-50
issn 0927-7099
1572-9974
language eng
recordid cdi_proquest_miscellaneous_839051507
source International Bibliography of the Social Sciences (IBSS); Springer LINK Archives
subjects Capital market
Financial economics
Forecasts
Public goods
title Neural Networks in the Capital Markets: An Application to Index Forecasting
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A25%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20Networks%20in%20the%20Capital%20Markets:%20An%20Application%20to%20Index%20Forecasting&rft.jtitle=Computational%20economics&rft.au=Haefke,%20Christian&rft.date=1996-02-01&rft.volume=9&rft.issue=1&rft.spage=37&rft.epage=50&rft.pages=37-50&rft.issn=0927-7099&rft.eissn=1572-9974&rft_id=info:doi/10.1007/bf00115690&rft_dat=%3Cproquest_cross%3E839051507%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3070-93e2c4c830f020d760f1003d962268ee550f22438863ff345014b76ad15a139e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=839051507&rft_id=info:pmid/&rfr_iscdi=true