Loading…

An application of Kendall distributions and alternative dependence measures: SPX vs. VIX

Most of the recently-defined notions of positive or negative dependence rely upon a variety of orderings of bivariate random vectors. These orderings are generally partial orders, and thus there are many pairs of random vectors which are not comparable. By using a weakened version of stochastic domi...

Full description

Saved in:
Bibliographic Details
Published in:Insurance, mathematics & economics mathematics & economics, 2008-04, Vol.42 (2), p.469-472
Main Authors: Fountain, Robert L., Herman, John R., Rustvold, D. Leif
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c537t-91f1d39068aa2b6f21ce3ca5fe726c5312ca7325147360e17c3346147faee2093
cites cdi_FETCH-LOGICAL-c537t-91f1d39068aa2b6f21ce3ca5fe726c5312ca7325147360e17c3346147faee2093
container_end_page 472
container_issue 2
container_start_page 469
container_title Insurance, mathematics & economics
container_volume 42
creator Fountain, Robert L.
Herman, John R.
Rustvold, D. Leif
description Most of the recently-defined notions of positive or negative dependence rely upon a variety of orderings of bivariate random vectors. These orderings are generally partial orders, and thus there are many pairs of random vectors which are not comparable. By using a weakened version of stochastic domination and the concepts of Kendall distributions and metacopulas, an entirely new class of orderings, in which the comparability issue is resolved, has been recently created. Each ordering in this class can be used to construct a measure of dependence. A detailed example will be given, using data from the Standard & Poor’s 500 index and Chicago Board of Trades index for implied volatility.
doi_str_mv 10.1016/j.insmatheco.2006.11.007
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_839135671</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167668706001843</els_id><sourcerecordid>1460960521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c537t-91f1d39068aa2b6f21ce3ca5fe726c5312ca7325147360e17c3346147faee2093</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EEkvhP1gc4JTgsRM75laqAoVKIPGhvVmuM1G9yhd2slL_PRNtRSUOcBjP2H7ekT0vYxxECQL0m0MZxzz45RbDVEohdAlQCmEesR00RhW1re1jtiPUFFo35il7lvNBCAFWmx3bn4_cz3Mfg1_iNPKp459xbH3f8zbmJcWbdTvP3I8t9_2CaSTwiLzFmTgcA_IBfV4T5rf829c9P-aS_7zaP2dPOt9nfHGfz9iP95ffLz4W118-XF2cXxehVmYpLHTQKit047280Z2EgCr4ukMjNSEggzdK1lAZpQWCCUpVmnadR5TCqjP2-tR3TtOvFfPihpgD9r0fcVqza5QFVWsDRL76J6l0o5TQksCXf4GHaaV_99lJ0YCxldIENScopCnnhJ2bUxx8unMg3OaMO7gHZ9zmjANw5AxJP52kiWYY_ugQkQTr4N3RKV9JWu4oSNlQiltJMW932rrKSHe7DNTs3akZ0pCPEZPLIW62tDFhWFw7xf-_6DedHrRK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>208179436</pqid></control><display><type>article</type><title>An application of Kendall distributions and alternative dependence measures: SPX vs. VIX</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Backfile Package - Economics, Econometrics and Finance (Legacy) [YET]</source><source>Elsevier</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><creator>Fountain, Robert L. ; Herman, John R. ; Rustvold, D. Leif</creator><creatorcontrib>Fountain, Robert L. ; Herman, John R. ; Rustvold, D. Leif</creatorcontrib><description>Most of the recently-defined notions of positive or negative dependence rely upon a variety of orderings of bivariate random vectors. These orderings are generally partial orders, and thus there are many pairs of random vectors which are not comparable. By using a weakened version of stochastic domination and the concepts of Kendall distributions and metacopulas, an entirely new class of orderings, in which the comparability issue is resolved, has been recently created. Each ordering in this class can be used to construct a measure of dependence. A detailed example will be given, using data from the Standard &amp; Poor’s 500 index and Chicago Board of Trades index for implied volatility.</description><identifier>ISSN: 0167-6687</identifier><identifier>EISSN: 1873-5959</identifier><identifier>DOI: 10.1016/j.insmatheco.2006.11.007</identifier><identifier>CODEN: IMECDX</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Copulas ; Dependence measures ; Distribution ; Indexes ; Insurance ; Kendall distributions ; Mathematical finance ; Mathematics ; Matrix algebra ; Random variables ; Stochastic models ; Stochastic processes ; Studies ; Volatility</subject><ispartof>Insurance, mathematics &amp; economics, 2008-04, Vol.42 (2), p.469-472</ispartof><rights>2006 Elsevier Ltd</rights><rights>Copyright Elsevier Sequoia S.A. Apr 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c537t-91f1d39068aa2b6f21ce3ca5fe726c5312ca7325147360e17c3346147faee2093</citedby><cites>FETCH-LOGICAL-c537t-91f1d39068aa2b6f21ce3ca5fe726c5312ca7325147360e17c3346147faee2093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167668706001843$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3460,3564,27924,27925,33223,33224,45992,46003</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeeinsuma/v_3a42_3ay_3a2008_3ai_3a2_3ap_3a469-472.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Fountain, Robert L.</creatorcontrib><creatorcontrib>Herman, John R.</creatorcontrib><creatorcontrib>Rustvold, D. Leif</creatorcontrib><title>An application of Kendall distributions and alternative dependence measures: SPX vs. VIX</title><title>Insurance, mathematics &amp; economics</title><description>Most of the recently-defined notions of positive or negative dependence rely upon a variety of orderings of bivariate random vectors. These orderings are generally partial orders, and thus there are many pairs of random vectors which are not comparable. By using a weakened version of stochastic domination and the concepts of Kendall distributions and metacopulas, an entirely new class of orderings, in which the comparability issue is resolved, has been recently created. Each ordering in this class can be used to construct a measure of dependence. A detailed example will be given, using data from the Standard &amp; Poor’s 500 index and Chicago Board of Trades index for implied volatility.</description><subject>Copulas</subject><subject>Dependence measures</subject><subject>Distribution</subject><subject>Indexes</subject><subject>Insurance</subject><subject>Kendall distributions</subject><subject>Mathematical finance</subject><subject>Mathematics</subject><subject>Matrix algebra</subject><subject>Random variables</subject><subject>Stochastic models</subject><subject>Stochastic processes</subject><subject>Studies</subject><subject>Volatility</subject><issn>0167-6687</issn><issn>1873-5959</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNqFkU1v1DAQhi0EEkvhP1gc4JTgsRM75laqAoVKIPGhvVmuM1G9yhd2slL_PRNtRSUOcBjP2H7ekT0vYxxECQL0m0MZxzz45RbDVEohdAlQCmEesR00RhW1re1jtiPUFFo35il7lvNBCAFWmx3bn4_cz3Mfg1_iNPKp459xbH3f8zbmJcWbdTvP3I8t9_2CaSTwiLzFmTgcA_IBfV4T5rf829c9P-aS_7zaP2dPOt9nfHGfz9iP95ffLz4W118-XF2cXxehVmYpLHTQKit047280Z2EgCr4ukMjNSEggzdK1lAZpQWCCUpVmnadR5TCqjP2-tR3TtOvFfPihpgD9r0fcVqza5QFVWsDRL76J6l0o5TQksCXf4GHaaV_99lJ0YCxldIENScopCnnhJ2bUxx8unMg3OaMO7gHZ9zmjANw5AxJP52kiWYY_ugQkQTr4N3RKV9JWu4oSNlQiltJMW932rrKSHe7DNTs3akZ0pCPEZPLIW62tDFhWFw7xf-_6DedHrRK</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>Fountain, Robert L.</creator><creator>Herman, John R.</creator><creator>Rustvold, D. Leif</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope></search><sort><creationdate>20080401</creationdate><title>An application of Kendall distributions and alternative dependence measures: SPX vs. VIX</title><author>Fountain, Robert L. ; Herman, John R. ; Rustvold, D. Leif</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c537t-91f1d39068aa2b6f21ce3ca5fe726c5312ca7325147360e17c3346147faee2093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Copulas</topic><topic>Dependence measures</topic><topic>Distribution</topic><topic>Indexes</topic><topic>Insurance</topic><topic>Kendall distributions</topic><topic>Mathematical finance</topic><topic>Mathematics</topic><topic>Matrix algebra</topic><topic>Random variables</topic><topic>Stochastic models</topic><topic>Stochastic processes</topic><topic>Studies</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fountain, Robert L.</creatorcontrib><creatorcontrib>Herman, John R.</creatorcontrib><creatorcontrib>Rustvold, D. Leif</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Insurance, mathematics &amp; economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fountain, Robert L.</au><au>Herman, John R.</au><au>Rustvold, D. Leif</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An application of Kendall distributions and alternative dependence measures: SPX vs. VIX</atitle><jtitle>Insurance, mathematics &amp; economics</jtitle><date>2008-04-01</date><risdate>2008</risdate><volume>42</volume><issue>2</issue><spage>469</spage><epage>472</epage><pages>469-472</pages><issn>0167-6687</issn><eissn>1873-5959</eissn><coden>IMECDX</coden><abstract>Most of the recently-defined notions of positive or negative dependence rely upon a variety of orderings of bivariate random vectors. These orderings are generally partial orders, and thus there are many pairs of random vectors which are not comparable. By using a weakened version of stochastic domination and the concepts of Kendall distributions and metacopulas, an entirely new class of orderings, in which the comparability issue is resolved, has been recently created. Each ordering in this class can be used to construct a measure of dependence. A detailed example will be given, using data from the Standard &amp; Poor’s 500 index and Chicago Board of Trades index for implied volatility.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.insmatheco.2006.11.007</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-6687
ispartof Insurance, mathematics & economics, 2008-04, Vol.42 (2), p.469-472
issn 0167-6687
1873-5959
language eng
recordid cdi_proquest_miscellaneous_839135671
source International Bibliography of the Social Sciences (IBSS); Backfile Package - Economics, Econometrics and Finance (Legacy) [YET]; Elsevier; Backfile Package - Mathematics (Legacy) [YMT]
subjects Copulas
Dependence measures
Distribution
Indexes
Insurance
Kendall distributions
Mathematical finance
Mathematics
Matrix algebra
Random variables
Stochastic models
Stochastic processes
Studies
Volatility
title An application of Kendall distributions and alternative dependence measures: SPX vs. VIX
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T17%3A31%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20application%20of%20Kendall%20distributions%20and%20alternative%20dependence%20measures:%20SPX%20vs.%20VIX&rft.jtitle=Insurance,%20mathematics%20&%20economics&rft.au=Fountain,%20Robert%20L.&rft.date=2008-04-01&rft.volume=42&rft.issue=2&rft.spage=469&rft.epage=472&rft.pages=469-472&rft.issn=0167-6687&rft.eissn=1873-5959&rft.coden=IMECDX&rft_id=info:doi/10.1016/j.insmatheco.2006.11.007&rft_dat=%3Cproquest_cross%3E1460960521%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c537t-91f1d39068aa2b6f21ce3ca5fe726c5312ca7325147360e17c3346147faee2093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=208179436&rft_id=info:pmid/&rfr_iscdi=true