Loading…
An application of Kendall distributions and alternative dependence measures: SPX vs. VIX
Most of the recently-defined notions of positive or negative dependence rely upon a variety of orderings of bivariate random vectors. These orderings are generally partial orders, and thus there are many pairs of random vectors which are not comparable. By using a weakened version of stochastic domi...
Saved in:
Published in: | Insurance, mathematics & economics mathematics & economics, 2008-04, Vol.42 (2), p.469-472 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c537t-91f1d39068aa2b6f21ce3ca5fe726c5312ca7325147360e17c3346147faee2093 |
---|---|
cites | cdi_FETCH-LOGICAL-c537t-91f1d39068aa2b6f21ce3ca5fe726c5312ca7325147360e17c3346147faee2093 |
container_end_page | 472 |
container_issue | 2 |
container_start_page | 469 |
container_title | Insurance, mathematics & economics |
container_volume | 42 |
creator | Fountain, Robert L. Herman, John R. Rustvold, D. Leif |
description | Most of the recently-defined notions of positive or negative dependence rely upon a variety of orderings of bivariate random vectors. These orderings are generally partial orders, and thus there are many pairs of random vectors which are not comparable. By using a weakened version of stochastic domination and the concepts of Kendall distributions and metacopulas, an entirely new class of orderings, in which the comparability issue is resolved, has been recently created. Each ordering in this class can be used to construct a measure of dependence. A detailed example will be given, using data from the Standard & Poor’s 500 index and Chicago Board of Trades index for implied volatility. |
doi_str_mv | 10.1016/j.insmatheco.2006.11.007 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_839135671</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167668706001843</els_id><sourcerecordid>1460960521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c537t-91f1d39068aa2b6f21ce3ca5fe726c5312ca7325147360e17c3346147faee2093</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EEkvhP1gc4JTgsRM75laqAoVKIPGhvVmuM1G9yhd2slL_PRNtRSUOcBjP2H7ekT0vYxxECQL0m0MZxzz45RbDVEohdAlQCmEesR00RhW1re1jtiPUFFo35il7lvNBCAFWmx3bn4_cz3Mfg1_iNPKp459xbH3f8zbmJcWbdTvP3I8t9_2CaSTwiLzFmTgcA_IBfV4T5rf829c9P-aS_7zaP2dPOt9nfHGfz9iP95ffLz4W118-XF2cXxehVmYpLHTQKit047280Z2EgCr4ukMjNSEggzdK1lAZpQWCCUpVmnadR5TCqjP2-tR3TtOvFfPihpgD9r0fcVqza5QFVWsDRL76J6l0o5TQksCXf4GHaaV_99lJ0YCxldIENScopCnnhJ2bUxx8unMg3OaMO7gHZ9zmjANw5AxJP52kiWYY_ugQkQTr4N3RKV9JWu4oSNlQiltJMW932rrKSHe7DNTs3akZ0pCPEZPLIW62tDFhWFw7xf-_6DedHrRK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>208179436</pqid></control><display><type>article</type><title>An application of Kendall distributions and alternative dependence measures: SPX vs. VIX</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Backfile Package - Economics, Econometrics and Finance (Legacy) [YET]</source><source>Elsevier</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><creator>Fountain, Robert L. ; Herman, John R. ; Rustvold, D. Leif</creator><creatorcontrib>Fountain, Robert L. ; Herman, John R. ; Rustvold, D. Leif</creatorcontrib><description>Most of the recently-defined notions of positive or negative dependence rely upon a variety of orderings of bivariate random vectors. These orderings are generally partial orders, and thus there are many pairs of random vectors which are not comparable. By using a weakened version of stochastic domination and the concepts of Kendall distributions and metacopulas, an entirely new class of orderings, in which the comparability issue is resolved, has been recently created. Each ordering in this class can be used to construct a measure of dependence. A detailed example will be given, using data from the Standard & Poor’s 500 index and Chicago Board of Trades index for implied volatility.</description><identifier>ISSN: 0167-6687</identifier><identifier>EISSN: 1873-5959</identifier><identifier>DOI: 10.1016/j.insmatheco.2006.11.007</identifier><identifier>CODEN: IMECDX</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Copulas ; Dependence measures ; Distribution ; Indexes ; Insurance ; Kendall distributions ; Mathematical finance ; Mathematics ; Matrix algebra ; Random variables ; Stochastic models ; Stochastic processes ; Studies ; Volatility</subject><ispartof>Insurance, mathematics & economics, 2008-04, Vol.42 (2), p.469-472</ispartof><rights>2006 Elsevier Ltd</rights><rights>Copyright Elsevier Sequoia S.A. Apr 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c537t-91f1d39068aa2b6f21ce3ca5fe726c5312ca7325147360e17c3346147faee2093</citedby><cites>FETCH-LOGICAL-c537t-91f1d39068aa2b6f21ce3ca5fe726c5312ca7325147360e17c3346147faee2093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167668706001843$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3460,3564,27924,27925,33223,33224,45992,46003</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeeinsuma/v_3a42_3ay_3a2008_3ai_3a2_3ap_3a469-472.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Fountain, Robert L.</creatorcontrib><creatorcontrib>Herman, John R.</creatorcontrib><creatorcontrib>Rustvold, D. Leif</creatorcontrib><title>An application of Kendall distributions and alternative dependence measures: SPX vs. VIX</title><title>Insurance, mathematics & economics</title><description>Most of the recently-defined notions of positive or negative dependence rely upon a variety of orderings of bivariate random vectors. These orderings are generally partial orders, and thus there are many pairs of random vectors which are not comparable. By using a weakened version of stochastic domination and the concepts of Kendall distributions and metacopulas, an entirely new class of orderings, in which the comparability issue is resolved, has been recently created. Each ordering in this class can be used to construct a measure of dependence. A detailed example will be given, using data from the Standard & Poor’s 500 index and Chicago Board of Trades index for implied volatility.</description><subject>Copulas</subject><subject>Dependence measures</subject><subject>Distribution</subject><subject>Indexes</subject><subject>Insurance</subject><subject>Kendall distributions</subject><subject>Mathematical finance</subject><subject>Mathematics</subject><subject>Matrix algebra</subject><subject>Random variables</subject><subject>Stochastic models</subject><subject>Stochastic processes</subject><subject>Studies</subject><subject>Volatility</subject><issn>0167-6687</issn><issn>1873-5959</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNqFkU1v1DAQhi0EEkvhP1gc4JTgsRM75laqAoVKIPGhvVmuM1G9yhd2slL_PRNtRSUOcBjP2H7ekT0vYxxECQL0m0MZxzz45RbDVEohdAlQCmEesR00RhW1re1jtiPUFFo35il7lvNBCAFWmx3bn4_cz3Mfg1_iNPKp459xbH3f8zbmJcWbdTvP3I8t9_2CaSTwiLzFmTgcA_IBfV4T5rf829c9P-aS_7zaP2dPOt9nfHGfz9iP95ffLz4W118-XF2cXxehVmYpLHTQKit047280Z2EgCr4ukMjNSEggzdK1lAZpQWCCUpVmnadR5TCqjP2-tR3TtOvFfPihpgD9r0fcVqza5QFVWsDRL76J6l0o5TQksCXf4GHaaV_99lJ0YCxldIENScopCnnhJ2bUxx8unMg3OaMO7gHZ9zmjANw5AxJP52kiWYY_ugQkQTr4N3RKV9JWu4oSNlQiltJMW932rrKSHe7DNTs3akZ0pCPEZPLIW62tDFhWFw7xf-_6DedHrRK</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>Fountain, Robert L.</creator><creator>Herman, John R.</creator><creator>Rustvold, D. Leif</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope></search><sort><creationdate>20080401</creationdate><title>An application of Kendall distributions and alternative dependence measures: SPX vs. VIX</title><author>Fountain, Robert L. ; Herman, John R. ; Rustvold, D. Leif</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c537t-91f1d39068aa2b6f21ce3ca5fe726c5312ca7325147360e17c3346147faee2093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Copulas</topic><topic>Dependence measures</topic><topic>Distribution</topic><topic>Indexes</topic><topic>Insurance</topic><topic>Kendall distributions</topic><topic>Mathematical finance</topic><topic>Mathematics</topic><topic>Matrix algebra</topic><topic>Random variables</topic><topic>Stochastic models</topic><topic>Stochastic processes</topic><topic>Studies</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fountain, Robert L.</creatorcontrib><creatorcontrib>Herman, John R.</creatorcontrib><creatorcontrib>Rustvold, D. Leif</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Insurance, mathematics & economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fountain, Robert L.</au><au>Herman, John R.</au><au>Rustvold, D. Leif</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An application of Kendall distributions and alternative dependence measures: SPX vs. VIX</atitle><jtitle>Insurance, mathematics & economics</jtitle><date>2008-04-01</date><risdate>2008</risdate><volume>42</volume><issue>2</issue><spage>469</spage><epage>472</epage><pages>469-472</pages><issn>0167-6687</issn><eissn>1873-5959</eissn><coden>IMECDX</coden><abstract>Most of the recently-defined notions of positive or negative dependence rely upon a variety of orderings of bivariate random vectors. These orderings are generally partial orders, and thus there are many pairs of random vectors which are not comparable. By using a weakened version of stochastic domination and the concepts of Kendall distributions and metacopulas, an entirely new class of orderings, in which the comparability issue is resolved, has been recently created. Each ordering in this class can be used to construct a measure of dependence. A detailed example will be given, using data from the Standard & Poor’s 500 index and Chicago Board of Trades index for implied volatility.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.insmatheco.2006.11.007</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-6687 |
ispartof | Insurance, mathematics & economics, 2008-04, Vol.42 (2), p.469-472 |
issn | 0167-6687 1873-5959 |
language | eng |
recordid | cdi_proquest_miscellaneous_839135671 |
source | International Bibliography of the Social Sciences (IBSS); Backfile Package - Economics, Econometrics and Finance (Legacy) [YET]; Elsevier; Backfile Package - Mathematics (Legacy) [YMT] |
subjects | Copulas Dependence measures Distribution Indexes Insurance Kendall distributions Mathematical finance Mathematics Matrix algebra Random variables Stochastic models Stochastic processes Studies Volatility |
title | An application of Kendall distributions and alternative dependence measures: SPX vs. VIX |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T17%3A31%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20application%20of%20Kendall%20distributions%20and%20alternative%20dependence%20measures:%20SPX%20vs.%20VIX&rft.jtitle=Insurance,%20mathematics%20&%20economics&rft.au=Fountain,%20Robert%20L.&rft.date=2008-04-01&rft.volume=42&rft.issue=2&rft.spage=469&rft.epage=472&rft.pages=469-472&rft.issn=0167-6687&rft.eissn=1873-5959&rft.coden=IMECDX&rft_id=info:doi/10.1016/j.insmatheco.2006.11.007&rft_dat=%3Cproquest_cross%3E1460960521%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c537t-91f1d39068aa2b6f21ce3ca5fe726c5312ca7325147360e17c3346147faee2093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=208179436&rft_id=info:pmid/&rfr_iscdi=true |