Loading…
Optical Properties of Individual Silicon Nanowires for Photonic Devices
Silicon is a high refractive index material. Consequently, silicon nanowires (SiNWs) with diameters on the order of the wavelengths of visible light show strong resonant field enhancement of the incident light, so this type of nanomaterial is a good candidate for all kinds of photonic devices. Surpr...
Saved in:
Published in: | ACS nano 2010-12, Vol.4 (12), p.7113-7122 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Silicon is a high refractive index material. Consequently, silicon nanowires (SiNWs) with diameters on the order of the wavelengths of visible light show strong resonant field enhancement of the incident light, so this type of nanomaterial is a good candidate for all kinds of photonic devices. Surprisingly enough, a thorough experimental and theoretical analysis of both the polarization dependence of the absorption and the scattering behavior of individual SiNWs under defined illumination has not been presented yet. Here, the present paper will contribute by showing optical properties such as scattering and absorption of individual SiNWs experimentally in an optical microscope using bright- and dark-field illumination modes as well as in analytical Mie calculations. Experimental and calculation results are in good agreement, and both reveal a strong correlation of the optical properties of individual SiNWs to their diameters. This finding supports the notion that SiNWs can be used in photonic applications such as for photovoltaics or optical sensors. |
---|---|
ISSN: | 1936-0851 1936-086X |
DOI: | 10.1021/nn101076t |