Loading…
Fault tolerant quantum computation with nondeterministic gates
In certain approaches to quantum computing the operations between qubits are nondeterministic and likely to fail. For example, a distributed quantum processor would achieve scalability by networking together many small components; operations between components should be assumed to be failure prone....
Saved in:
Published in: | Physical review letters 2010-12, Vol.105 (25), p.250502-250502, Article 250502 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c310t-62a1ca04c19b06a0f33d10139e1a98232231c1258d526afaa52bef6ae4d840fb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c310t-62a1ca04c19b06a0f33d10139e1a98232231c1258d526afaa52bef6ae4d840fb3 |
container_end_page | 250502 |
container_issue | 25 |
container_start_page | 250502 |
container_title | Physical review letters |
container_volume | 105 |
creator | Li, Ying Barrett, Sean D Stace, Thomas M Benjamin, Simon C |
description | In certain approaches to quantum computing the operations between qubits are nondeterministic and likely to fail. For example, a distributed quantum processor would achieve scalability by networking together many small components; operations between components should be assumed to be failure prone. In the ultimate limit of this architecture each component contains only one qubit. Here we derive thresholds for fault-tolerant quantum computation under this extreme paradigm. We find that computation is supported for remarkably high failure rates (exceeding 90%) providing that failures are heralded; meanwhile the rate of unknown errors should not exceed 2 in 10(4) operations. |
doi_str_mv | 10.1103/PhysRevLett.105.250502 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_840355281</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>840355281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-62a1ca04c19b06a0f33d10139e1a98232231c1258d526afaa52bef6ae4d840fb3</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRbK3-hZKbp9SZ3WyaXAQpVoWCInoOk83ERvLRZnct_fdGWsXLDAzPOzM8QkwRZoigbl7We_vKXyt2boagZ1KDBnkixgjzNJwjRqdiDKAwTAHmI3Fh7ScAoIyTczGSKBXqOB2L2yX52gWuq7mn1gVbP1TfBKZrNt6Rq7o22FVuHbRdW7DjvqnayrrKBB_k2F6Ks5Jqy1fHPhHvy_u3xWO4en54WtytQqMQXBhLQkMQGUxziAlKpQoEVCkjpYlUcnjHoNRJoWVMJZGWOZcxcVQkEZS5mojrw95N3209W5c1lTVc19Ry5202UEprmeBAxgfS9J21PZfZpq8a6vcZQvajLvunbpjp7KBuCE6PJ3zecPEX-3WlvgFMM23H</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>840355281</pqid></control><display><type>article</type><title>Fault tolerant quantum computation with nondeterministic gates</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Li, Ying ; Barrett, Sean D ; Stace, Thomas M ; Benjamin, Simon C</creator><creatorcontrib>Li, Ying ; Barrett, Sean D ; Stace, Thomas M ; Benjamin, Simon C</creatorcontrib><description>In certain approaches to quantum computing the operations between qubits are nondeterministic and likely to fail. For example, a distributed quantum processor would achieve scalability by networking together many small components; operations between components should be assumed to be failure prone. In the ultimate limit of this architecture each component contains only one qubit. Here we derive thresholds for fault-tolerant quantum computation under this extreme paradigm. We find that computation is supported for remarkably high failure rates (exceeding 90%) providing that failures are heralded; meanwhile the rate of unknown errors should not exceed 2 in 10(4) operations.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.105.250502</identifier><identifier>PMID: 21231569</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review letters, 2010-12, Vol.105 (25), p.250502-250502, Article 250502</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-62a1ca04c19b06a0f33d10139e1a98232231c1258d526afaa52bef6ae4d840fb3</citedby><cites>FETCH-LOGICAL-c310t-62a1ca04c19b06a0f33d10139e1a98232231c1258d526afaa52bef6ae4d840fb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21231569$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Ying</creatorcontrib><creatorcontrib>Barrett, Sean D</creatorcontrib><creatorcontrib>Stace, Thomas M</creatorcontrib><creatorcontrib>Benjamin, Simon C</creatorcontrib><title>Fault tolerant quantum computation with nondeterministic gates</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>In certain approaches to quantum computing the operations between qubits are nondeterministic and likely to fail. For example, a distributed quantum processor would achieve scalability by networking together many small components; operations between components should be assumed to be failure prone. In the ultimate limit of this architecture each component contains only one qubit. Here we derive thresholds for fault-tolerant quantum computation under this extreme paradigm. We find that computation is supported for remarkably high failure rates (exceeding 90%) providing that failures are heralded; meanwhile the rate of unknown errors should not exceed 2 in 10(4) operations.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpNkE1Lw0AQhhdRbK3-hZKbp9SZ3WyaXAQpVoWCInoOk83ERvLRZnct_fdGWsXLDAzPOzM8QkwRZoigbl7We_vKXyt2boagZ1KDBnkixgjzNJwjRqdiDKAwTAHmI3Fh7ScAoIyTczGSKBXqOB2L2yX52gWuq7mn1gVbP1TfBKZrNt6Rq7o22FVuHbRdW7DjvqnayrrKBB_k2F6Ks5Jqy1fHPhHvy_u3xWO4en54WtytQqMQXBhLQkMQGUxziAlKpQoEVCkjpYlUcnjHoNRJoWVMJZGWOZcxcVQkEZS5mojrw95N3209W5c1lTVc19Ry5202UEprmeBAxgfS9J21PZfZpq8a6vcZQvajLvunbpjp7KBuCE6PJ3zecPEX-3WlvgFMM23H</recordid><startdate>20101217</startdate><enddate>20101217</enddate><creator>Li, Ying</creator><creator>Barrett, Sean D</creator><creator>Stace, Thomas M</creator><creator>Benjamin, Simon C</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20101217</creationdate><title>Fault tolerant quantum computation with nondeterministic gates</title><author>Li, Ying ; Barrett, Sean D ; Stace, Thomas M ; Benjamin, Simon C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-62a1ca04c19b06a0f33d10139e1a98232231c1258d526afaa52bef6ae4d840fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Ying</creatorcontrib><creatorcontrib>Barrett, Sean D</creatorcontrib><creatorcontrib>Stace, Thomas M</creatorcontrib><creatorcontrib>Benjamin, Simon C</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Ying</au><au>Barrett, Sean D</au><au>Stace, Thomas M</au><au>Benjamin, Simon C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fault tolerant quantum computation with nondeterministic gates</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2010-12-17</date><risdate>2010</risdate><volume>105</volume><issue>25</issue><spage>250502</spage><epage>250502</epage><pages>250502-250502</pages><artnum>250502</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>In certain approaches to quantum computing the operations between qubits are nondeterministic and likely to fail. For example, a distributed quantum processor would achieve scalability by networking together many small components; operations between components should be assumed to be failure prone. In the ultimate limit of this architecture each component contains only one qubit. Here we derive thresholds for fault-tolerant quantum computation under this extreme paradigm. We find that computation is supported for remarkably high failure rates (exceeding 90%) providing that failures are heralded; meanwhile the rate of unknown errors should not exceed 2 in 10(4) operations.</abstract><cop>United States</cop><pmid>21231569</pmid><doi>10.1103/PhysRevLett.105.250502</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2010-12, Vol.105 (25), p.250502-250502, Article 250502 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_840355281 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
title | Fault tolerant quantum computation with nondeterministic gates |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T12%3A47%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fault%20tolerant%20quantum%20computation%20with%20nondeterministic%20gates&rft.jtitle=Physical%20review%20letters&rft.au=Li,%20Ying&rft.date=2010-12-17&rft.volume=105&rft.issue=25&rft.spage=250502&rft.epage=250502&rft.pages=250502-250502&rft.artnum=250502&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.105.250502&rft_dat=%3Cproquest_cross%3E840355281%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c310t-62a1ca04c19b06a0f33d10139e1a98232231c1258d526afaa52bef6ae4d840fb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=840355281&rft_id=info:pmid/21231569&rfr_iscdi=true |