Loading…

Fault tolerant quantum computation with very high threshold for loss errors

Many proposals for fault tolerant quantum computation (FTQC) suffer detectable loss processes. Here we show that topological FTQC schemes, which are known to have high error thresholds, are also extremely robust against losses. We demonstrate that these schemes tolerate loss rates up to 24.9%, deter...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2010-11, Vol.105 (20), p.200502-200502, Article 200502
Main Authors: Barrett, Sean D, Stace, Thomas M
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c363t-ec83f713a8beb081854309aca63c67715525b1844199569bd4a4a24c80a161b93
cites cdi_FETCH-LOGICAL-c363t-ec83f713a8beb081854309aca63c67715525b1844199569bd4a4a24c80a161b93
container_end_page 200502
container_issue 20
container_start_page 200502
container_title Physical review letters
container_volume 105
creator Barrett, Sean D
Stace, Thomas M
description Many proposals for fault tolerant quantum computation (FTQC) suffer detectable loss processes. Here we show that topological FTQC schemes, which are known to have high error thresholds, are also extremely robust against losses. We demonstrate that these schemes tolerate loss rates up to 24.9%, determined by bond percolation on a cubic lattice. Our numerical results show that these schemes retain good performance when loss and computational errors are simultaneously present.
doi_str_mv 10.1103/PhysRevLett.105.200502
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_840355538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>840355538</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-ec83f713a8beb081854309aca63c67715525b1844199569bd4a4a24c80a161b93</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRbK3-hbI3T6kz-5FsjlKsigVF9Bw2242JJN12d1PpvzfSKl5mYHg_hoeQKcIMEfjNS70Pr3a3tDHOEOSMAUhgJ2SMkOVJhihOyRiAY5IDZCNyEcInACBL1TkZMWQcGfIxeVrovo00utZ6vY502w-z76hx3aaPOjZuTb-aWNOd9XtaNx81jbW3oXbtilbO09aFQK33zodLclbpNtir456Q98Xd2_whWT7fP85vl4nhKY-JNYpXGXKtSluCQiUFh1wbnXKTZhlKyWSJSgjMc5nm5UpooZkwCjSmWOZ8Qq4PuRvvtr0NseiaYGzb6rV1fSiUAC6l5GpQpgel8cOb3lbFxjed9vsCofjhWPzjONxkceA4GKfHir7s7OrP9guOfwM81XF-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>840355538</pqid></control><display><type>article</type><title>Fault tolerant quantum computation with very high threshold for loss errors</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Barrett, Sean D ; Stace, Thomas M</creator><creatorcontrib>Barrett, Sean D ; Stace, Thomas M</creatorcontrib><description>Many proposals for fault tolerant quantum computation (FTQC) suffer detectable loss processes. Here we show that topological FTQC schemes, which are known to have high error thresholds, are also extremely robust against losses. We demonstrate that these schemes tolerate loss rates up to 24.9%, determined by bond percolation on a cubic lattice. Our numerical results show that these schemes retain good performance when loss and computational errors are simultaneously present.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.105.200502</identifier><identifier>PMID: 21231213</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review letters, 2010-11, Vol.105 (20), p.200502-200502, Article 200502</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-ec83f713a8beb081854309aca63c67715525b1844199569bd4a4a24c80a161b93</citedby><cites>FETCH-LOGICAL-c363t-ec83f713a8beb081854309aca63c67715525b1844199569bd4a4a24c80a161b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21231213$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barrett, Sean D</creatorcontrib><creatorcontrib>Stace, Thomas M</creatorcontrib><title>Fault tolerant quantum computation with very high threshold for loss errors</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>Many proposals for fault tolerant quantum computation (FTQC) suffer detectable loss processes. Here we show that topological FTQC schemes, which are known to have high error thresholds, are also extremely robust against losses. We demonstrate that these schemes tolerate loss rates up to 24.9%, determined by bond percolation on a cubic lattice. Our numerical results show that these schemes retain good performance when loss and computational errors are simultaneously present.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpNkE1Lw0AQhhdRbK3-hbI3T6kz-5FsjlKsigVF9Bw2242JJN12d1PpvzfSKl5mYHg_hoeQKcIMEfjNS70Pr3a3tDHOEOSMAUhgJ2SMkOVJhihOyRiAY5IDZCNyEcInACBL1TkZMWQcGfIxeVrovo00utZ6vY502w-z76hx3aaPOjZuTb-aWNOd9XtaNx81jbW3oXbtilbO09aFQK33zodLclbpNtir456Q98Xd2_whWT7fP85vl4nhKY-JNYpXGXKtSluCQiUFh1wbnXKTZhlKyWSJSgjMc5nm5UpooZkwCjSmWOZ8Qq4PuRvvtr0NseiaYGzb6rV1fSiUAC6l5GpQpgel8cOb3lbFxjed9vsCofjhWPzjONxkceA4GKfHir7s7OrP9guOfwM81XF-</recordid><startdate>20101112</startdate><enddate>20101112</enddate><creator>Barrett, Sean D</creator><creator>Stace, Thomas M</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20101112</creationdate><title>Fault tolerant quantum computation with very high threshold for loss errors</title><author>Barrett, Sean D ; Stace, Thomas M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-ec83f713a8beb081854309aca63c67715525b1844199569bd4a4a24c80a161b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barrett, Sean D</creatorcontrib><creatorcontrib>Stace, Thomas M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barrett, Sean D</au><au>Stace, Thomas M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fault tolerant quantum computation with very high threshold for loss errors</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2010-11-12</date><risdate>2010</risdate><volume>105</volume><issue>20</issue><spage>200502</spage><epage>200502</epage><pages>200502-200502</pages><artnum>200502</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Many proposals for fault tolerant quantum computation (FTQC) suffer detectable loss processes. Here we show that topological FTQC schemes, which are known to have high error thresholds, are also extremely robust against losses. We demonstrate that these schemes tolerate loss rates up to 24.9%, determined by bond percolation on a cubic lattice. Our numerical results show that these schemes retain good performance when loss and computational errors are simultaneously present.</abstract><cop>United States</cop><pmid>21231213</pmid><doi>10.1103/PhysRevLett.105.200502</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2010-11, Vol.105 (20), p.200502-200502, Article 200502
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_840355538
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
title Fault tolerant quantum computation with very high threshold for loss errors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A27%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fault%20tolerant%20quantum%20computation%20with%20very%20high%20threshold%20for%20loss%20errors&rft.jtitle=Physical%20review%20letters&rft.au=Barrett,%20Sean%20D&rft.date=2010-11-12&rft.volume=105&rft.issue=20&rft.spage=200502&rft.epage=200502&rft.pages=200502-200502&rft.artnum=200502&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.105.200502&rft_dat=%3Cproquest_cross%3E840355538%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-ec83f713a8beb081854309aca63c67715525b1844199569bd4a4a24c80a161b93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=840355538&rft_id=info:pmid/21231213&rfr_iscdi=true