Loading…
Fault tolerant quantum computation with very high threshold for loss errors
Many proposals for fault tolerant quantum computation (FTQC) suffer detectable loss processes. Here we show that topological FTQC schemes, which are known to have high error thresholds, are also extremely robust against losses. We demonstrate that these schemes tolerate loss rates up to 24.9%, deter...
Saved in:
Published in: | Physical review letters 2010-11, Vol.105 (20), p.200502-200502, Article 200502 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c363t-ec83f713a8beb081854309aca63c67715525b1844199569bd4a4a24c80a161b93 |
---|---|
cites | cdi_FETCH-LOGICAL-c363t-ec83f713a8beb081854309aca63c67715525b1844199569bd4a4a24c80a161b93 |
container_end_page | 200502 |
container_issue | 20 |
container_start_page | 200502 |
container_title | Physical review letters |
container_volume | 105 |
creator | Barrett, Sean D Stace, Thomas M |
description | Many proposals for fault tolerant quantum computation (FTQC) suffer detectable loss processes. Here we show that topological FTQC schemes, which are known to have high error thresholds, are also extremely robust against losses. We demonstrate that these schemes tolerate loss rates up to 24.9%, determined by bond percolation on a cubic lattice. Our numerical results show that these schemes retain good performance when loss and computational errors are simultaneously present. |
doi_str_mv | 10.1103/PhysRevLett.105.200502 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_840355538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>840355538</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-ec83f713a8beb081854309aca63c67715525b1844199569bd4a4a24c80a161b93</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRbK3-hbI3T6kz-5FsjlKsigVF9Bw2242JJN12d1PpvzfSKl5mYHg_hoeQKcIMEfjNS70Pr3a3tDHOEOSMAUhgJ2SMkOVJhihOyRiAY5IDZCNyEcInACBL1TkZMWQcGfIxeVrovo00utZ6vY502w-z76hx3aaPOjZuTb-aWNOd9XtaNx81jbW3oXbtilbO09aFQK33zodLclbpNtir456Q98Xd2_whWT7fP85vl4nhKY-JNYpXGXKtSluCQiUFh1wbnXKTZhlKyWSJSgjMc5nm5UpooZkwCjSmWOZ8Qq4PuRvvtr0NseiaYGzb6rV1fSiUAC6l5GpQpgel8cOb3lbFxjed9vsCofjhWPzjONxkceA4GKfHir7s7OrP9guOfwM81XF-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>840355538</pqid></control><display><type>article</type><title>Fault tolerant quantum computation with very high threshold for loss errors</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Barrett, Sean D ; Stace, Thomas M</creator><creatorcontrib>Barrett, Sean D ; Stace, Thomas M</creatorcontrib><description>Many proposals for fault tolerant quantum computation (FTQC) suffer detectable loss processes. Here we show that topological FTQC schemes, which are known to have high error thresholds, are also extremely robust against losses. We demonstrate that these schemes tolerate loss rates up to 24.9%, determined by bond percolation on a cubic lattice. Our numerical results show that these schemes retain good performance when loss and computational errors are simultaneously present.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.105.200502</identifier><identifier>PMID: 21231213</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review letters, 2010-11, Vol.105 (20), p.200502-200502, Article 200502</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-ec83f713a8beb081854309aca63c67715525b1844199569bd4a4a24c80a161b93</citedby><cites>FETCH-LOGICAL-c363t-ec83f713a8beb081854309aca63c67715525b1844199569bd4a4a24c80a161b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21231213$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barrett, Sean D</creatorcontrib><creatorcontrib>Stace, Thomas M</creatorcontrib><title>Fault tolerant quantum computation with very high threshold for loss errors</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>Many proposals for fault tolerant quantum computation (FTQC) suffer detectable loss processes. Here we show that topological FTQC schemes, which are known to have high error thresholds, are also extremely robust against losses. We demonstrate that these schemes tolerate loss rates up to 24.9%, determined by bond percolation on a cubic lattice. Our numerical results show that these schemes retain good performance when loss and computational errors are simultaneously present.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpNkE1Lw0AQhhdRbK3-hbI3T6kz-5FsjlKsigVF9Bw2242JJN12d1PpvzfSKl5mYHg_hoeQKcIMEfjNS70Pr3a3tDHOEOSMAUhgJ2SMkOVJhihOyRiAY5IDZCNyEcInACBL1TkZMWQcGfIxeVrovo00utZ6vY502w-z76hx3aaPOjZuTb-aWNOd9XtaNx81jbW3oXbtilbO09aFQK33zodLclbpNtir456Q98Xd2_whWT7fP85vl4nhKY-JNYpXGXKtSluCQiUFh1wbnXKTZhlKyWSJSgjMc5nm5UpooZkwCjSmWOZ8Qq4PuRvvtr0NseiaYGzb6rV1fSiUAC6l5GpQpgel8cOb3lbFxjed9vsCofjhWPzjONxkceA4GKfHir7s7OrP9guOfwM81XF-</recordid><startdate>20101112</startdate><enddate>20101112</enddate><creator>Barrett, Sean D</creator><creator>Stace, Thomas M</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20101112</creationdate><title>Fault tolerant quantum computation with very high threshold for loss errors</title><author>Barrett, Sean D ; Stace, Thomas M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-ec83f713a8beb081854309aca63c67715525b1844199569bd4a4a24c80a161b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barrett, Sean D</creatorcontrib><creatorcontrib>Stace, Thomas M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barrett, Sean D</au><au>Stace, Thomas M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fault tolerant quantum computation with very high threshold for loss errors</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2010-11-12</date><risdate>2010</risdate><volume>105</volume><issue>20</issue><spage>200502</spage><epage>200502</epage><pages>200502-200502</pages><artnum>200502</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Many proposals for fault tolerant quantum computation (FTQC) suffer detectable loss processes. Here we show that topological FTQC schemes, which are known to have high error thresholds, are also extremely robust against losses. We demonstrate that these schemes tolerate loss rates up to 24.9%, determined by bond percolation on a cubic lattice. Our numerical results show that these schemes retain good performance when loss and computational errors are simultaneously present.</abstract><cop>United States</cop><pmid>21231213</pmid><doi>10.1103/PhysRevLett.105.200502</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2010-11, Vol.105 (20), p.200502-200502, Article 200502 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_840355538 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
title | Fault tolerant quantum computation with very high threshold for loss errors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A27%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fault%20tolerant%20quantum%20computation%20with%20very%20high%20threshold%20for%20loss%20errors&rft.jtitle=Physical%20review%20letters&rft.au=Barrett,%20Sean%20D&rft.date=2010-11-12&rft.volume=105&rft.issue=20&rft.spage=200502&rft.epage=200502&rft.pages=200502-200502&rft.artnum=200502&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.105.200502&rft_dat=%3Cproquest_cross%3E840355538%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-ec83f713a8beb081854309aca63c67715525b1844199569bd4a4a24c80a161b93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=840355538&rft_id=info:pmid/21231213&rfr_iscdi=true |