Loading…
Collagen isoform shift during the early phase of reverse left ventricular remodelling after relief of pressure overload
Aortic stenosis induces pressure overload and myocardial remodelling with concentric hypertrophy and alterations in extracellular matrix (ECM). Aortic valve replacement leads to reverse remodelling, a process of which knowledge is scarce. The aims of the present study were to examine alterations in...
Saved in:
Published in: | European heart journal 2011-01, Vol.32 (2), p.236-245 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Aortic stenosis induces pressure overload and myocardial remodelling with concentric hypertrophy and alterations in extracellular matrix (ECM). Aortic valve replacement leads to reverse remodelling, a process of which knowledge is scarce. The aims of the present study were to examine alterations in myocardial gene expression and subsequently identify molecular alterations important for the early phase of reverse remodelling.
After 4 weeks of ascending aortic banding, mice were subjected to a debanding operation (DB) and followed for 3, 7, or 14 days. Cardiac function was assessed by echocardiography/tissue Doppler ultrasonography. Myocardial gene expression was examined using Affymetrix microarray and the topGO software and verified by real-time polymerase chain reaction. Quantitative measurements of collagen subtypes were performed. Aortic banding increased left ventricular mass by 60%, with normalization to sham level 14 days after DB. Extracellular matrix genes were the most regulated after DB. Three days after DB, collagen I was transiently increased, whereas collagens III and VIII increased later at 7 days.
The ECM genes were the most altered during reverse remodelling. There was a change in isoform constitution as collagen type I increased transiently at 3 days followed by a later increase in types III and VIII at 7 days after DB. This might be important for the biomechanical properties of the heart and recovery of cardiac function. |
---|---|
ISSN: | 0195-668X 1522-9645 |
DOI: | 10.1093/eurheartj/ehq166 |