Loading…

Transport of Protein by Goldfish Optic Nerve Fibers

After tritiated leucine was injected into the eye of goldfish, radioactive protein synthesized by the ganglion cell bodies moved down the optic axons at an average rate of 0.4 mm per day. Radioautograms of the optic tectum in which these axons end show that, as early as 24 hours after the injection,...

Full description

Saved in:
Bibliographic Details
Published in:Science (American Association for the Advancement of Science) 1967-07, Vol.157 (3785), p.196-198
Main Author: Grafstein, Bernice
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:After tritiated leucine was injected into the eye of goldfish, radioactive protein synthesized by the ganglion cell bodies moved down the optic axons at an average rate of 0.4 mm per day. Radioautograms of the optic tectum in which these axons end show that, as early as 24 hours after the injection, before the radioactivity in the tectal layer containing the optic axons had risen above background level, the layer containing the axon terminals was already heavily labeled. The radioactivity in the terminals reached a maximum about 48 hours after the injection and remained approximately constant for at least 23 days thereafter, whereas the radioactivity in the fiber layer increased significantly during the same interval, as the slowly moving protein component entered it. Thus there appears to be a special mechanism for rapid transport of protein from the cell body to the synaptic terminals, as well as a slower movement of protein down the axon.
ISSN:0036-8075
1095-9203
DOI:10.1126/science.157.3785.196