Loading…
High rates of photobiological H2 production by a cyanobacterium under aerobic conditions
Among the emerging renewable and green energy sources, biohydrogen stands out as an appealing choice. Hydrogen can be produced by certain groups of microorganisms that possess functional nitrogenase and/or bidirectional hydrogenases. In particular, the potential of photobiological hydrogen productio...
Saved in:
Published in: | Nature communications 2010-12, Vol.1 (1), p.139-139, Article 139 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Among the emerging renewable and green energy sources, biohydrogen stands out as an appealing choice. Hydrogen can be produced by certain groups of microorganisms that possess functional nitrogenase and/or bidirectional hydrogenases. In particular, the potential of photobiological hydrogen production by oxygenic photosynthetic microbes has attracted significant interest. However, nitrogenase and hydrogenase are generally oxygen sensitive, and require protective mechanisms to function in an aerobic extracellular environment. Here, we describe
Cyanothece
sp. ATCC 51142, a unicellular, diazotrophic cyanobacterium with the capacity to generate high levels of hydrogen under aerobic conditions. Wild-type
Cyanothece
51142 can produce hydrogen at rates as high as 465 μmol per mg of chlorophyll per hour in the presence of glycerol. Hydrogen production in this strain is mediated by an efficient nitrogenase system, which can be manipulated to convert solar energy into hydrogen at rates that are several fold higher, compared with any previously described wild-type hydrogen-producing photosynthetic microbe.
Hydrogen production using photosynthetic bacteria is an appealing energy source, but typically the bacteria require anaerobic conditions. Here, the authors report a wild-type cyanobacterium strain that shows very high rates of hydrogen production under aerobic environmental conditions. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/ncomms1139 |