Loading…

Prediction of a hexagonal SiO₂ phase affecting stabilities of MgSiO₃ and CaSiO₃ at multimegabar pressures

Ultrahigh-pressure phase relationship of SiO₂ silica in multimegabar pressure condition is still quite unclear. Here, we report a theoretical prediction on a previously uncharacterized stable structure of silica with an unexpected hexagonal Fe₂P-type form. This phase, more stable than the cotunnite-...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2011-01, Vol.108 (4), p.1252-1255
Main Authors: Tsuchiya, Taku, Tsuchiya, Jun
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1255
container_issue 4
container_start_page 1252
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 108
creator Tsuchiya, Taku
Tsuchiya, Jun
description Ultrahigh-pressure phase relationship of SiO₂ silica in multimegabar pressure condition is still quite unclear. Here, we report a theoretical prediction on a previously uncharacterized stable structure of silica with an unexpected hexagonal Fe₂P-type form. This phase, more stable than the cotunnite-type structure, a previously postulated postpyrite phase, was discovered to stabilize at 640 GPa through a careful structure search by means of ab initio density functional computations over various structure models. This is the first evidential result of the pressure-induced phase transition to the Fe₂P-type structure among all dioxide compounds. The crystal structure consists of closely packed, fairly regular SiO₉ tricapped trigonal prisms with a significantly compact lattice. Additional investigation further elucidates large effects of this phase change in SiO₂ on the stability of MgSiO₃ and CaSiO₃ at multimegabar pressures. A postperovskite phase of MgSiO₃ breaks down at 1.04 TPa along an assumed adiabat of super-Earths and yields Fe₂P-type SiO₂ and CsCl (B2)-type MgO. CaSiO₃ perovskite, on the other hand, directly dissociates into SiO₂ and metallic CaO, skipping a postperovskite polymorph. Predicted ultrahigh-pressure and temperature phase diagrams of SiO₂, MgSiO₃, and CaSiO₃ indicate that the Fe₂P-type SiO₂ could be one of the dominant components in the deep mantles of terrestrial exoplanets and the cores of gas giants.
doi_str_mv 10.1073/pnas.1013594108
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_847595580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41001847</jstor_id><sourcerecordid>41001847</sourcerecordid><originalsourceid>FETCH-LOGICAL-f264t-171f111d6b2d5c241fa2bbe6af7a965caf233f973fe72ba94fa6d4e09f217a143</originalsourceid><addsrcrecordid>eNpVkc1u1DAUhS0EokNhzQrwjlXA13bi8QYJjfiTiopUurZuEjvjKomD7SDYljflSTBMOyob21fn8znSPYQ8BfYKmBKvlxlTeYGotQS2vUc2wDRUjdTsPtkwxlW1lVyekEcpXTHGdL1lD8kJB8604GpDwpdoe99lH2YaHEW6tz9wCDOO9MKf_76-pssek6XonC3UPNCUsfWjz96mvz8-D_-4XxTnnu7wdsh0WsfsJztgi5Eu0aa0luMxeeBwTPbJzX1KLt-_-7r7WJ2df_i0e3tWOd7IXIECBwB90_K-7rgEh7xtbYNOoW7qDh0XwmklnFW8RS0dNr20TDsOCkGKU_Lm4Lus7WT7zs454miW6CeMP01Ab_5XZr83Q_huBONa1aoYvLwxiOHbalM2k0-dHUecbViT2UpV67qss5DP70YdM26XfAcobR3lUpeRBnjNC_DsAFylHOKRKI0yKDlFf3HQHQaDQ_TJXF7w0joDLaTkIP4AINugPQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>847595580</pqid></control><display><type>article</type><title>Prediction of a hexagonal SiO₂ phase affecting stabilities of MgSiO₃ and CaSiO₃ at multimegabar pressures</title><source>JSTOR Archival Journals and Primary Sources Collection【Remote access available】</source><source>PubMed Central</source><creator>Tsuchiya, Taku ; Tsuchiya, Jun</creator><creatorcontrib>Tsuchiya, Taku ; Tsuchiya, Jun</creatorcontrib><description>Ultrahigh-pressure phase relationship of SiO₂ silica in multimegabar pressure condition is still quite unclear. Here, we report a theoretical prediction on a previously uncharacterized stable structure of silica with an unexpected hexagonal Fe₂P-type form. This phase, more stable than the cotunnite-type structure, a previously postulated postpyrite phase, was discovered to stabilize at 640 GPa through a careful structure search by means of ab initio density functional computations over various structure models. This is the first evidential result of the pressure-induced phase transition to the Fe₂P-type structure among all dioxide compounds. The crystal structure consists of closely packed, fairly regular SiO₉ tricapped trigonal prisms with a significantly compact lattice. Additional investigation further elucidates large effects of this phase change in SiO₂ on the stability of MgSiO₃ and CaSiO₃ at multimegabar pressures. A postperovskite phase of MgSiO₃ breaks down at 1.04 TPa along an assumed adiabat of super-Earths and yields Fe₂P-type SiO₂ and CsCl (B2)-type MgO. CaSiO₃ perovskite, on the other hand, directly dissociates into SiO₂ and metallic CaO, skipping a postperovskite polymorph. Predicted ultrahigh-pressure and temperature phase diagrams of SiO₂, MgSiO₃, and CaSiO₃ indicate that the Fe₂P-type SiO₂ could be one of the dominant components in the deep mantles of terrestrial exoplanets and the cores of gas giants.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1013594108</identifier><identifier>PMID: 21209327</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Algorithms ; Calcium Compounds - chemistry ; Crystallization ; Dioxides ; Earth ; Enthalpy ; Extrasolar planets ; Gas giants ; Magnesium Compounds - chemistry ; Models, Chemical ; Models, Molecular ; Phase diagrams ; Phase Transition ; Physical Sciences ; Polyhedrons ; Pressure ; Pyrites ; Silicates - chemistry ; Silicon Dioxide - chemistry ; Super Earths ; Temperature ; Thermodynamics ; Volume</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2011-01, Vol.108 (4), p.1252-1255</ispartof><rights>Copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/108/4.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41001847$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41001847$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21209327$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tsuchiya, Taku</creatorcontrib><creatorcontrib>Tsuchiya, Jun</creatorcontrib><title>Prediction of a hexagonal SiO₂ phase affecting stabilities of MgSiO₃ and CaSiO₃ at multimegabar pressures</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Ultrahigh-pressure phase relationship of SiO₂ silica in multimegabar pressure condition is still quite unclear. Here, we report a theoretical prediction on a previously uncharacterized stable structure of silica with an unexpected hexagonal Fe₂P-type form. This phase, more stable than the cotunnite-type structure, a previously postulated postpyrite phase, was discovered to stabilize at 640 GPa through a careful structure search by means of ab initio density functional computations over various structure models. This is the first evidential result of the pressure-induced phase transition to the Fe₂P-type structure among all dioxide compounds. The crystal structure consists of closely packed, fairly regular SiO₉ tricapped trigonal prisms with a significantly compact lattice. Additional investigation further elucidates large effects of this phase change in SiO₂ on the stability of MgSiO₃ and CaSiO₃ at multimegabar pressures. A postperovskite phase of MgSiO₃ breaks down at 1.04 TPa along an assumed adiabat of super-Earths and yields Fe₂P-type SiO₂ and CsCl (B2)-type MgO. CaSiO₃ perovskite, on the other hand, directly dissociates into SiO₂ and metallic CaO, skipping a postperovskite polymorph. Predicted ultrahigh-pressure and temperature phase diagrams of SiO₂, MgSiO₃, and CaSiO₃ indicate that the Fe₂P-type SiO₂ could be one of the dominant components in the deep mantles of terrestrial exoplanets and the cores of gas giants.</description><subject>Algorithms</subject><subject>Calcium Compounds - chemistry</subject><subject>Crystallization</subject><subject>Dioxides</subject><subject>Earth</subject><subject>Enthalpy</subject><subject>Extrasolar planets</subject><subject>Gas giants</subject><subject>Magnesium Compounds - chemistry</subject><subject>Models, Chemical</subject><subject>Models, Molecular</subject><subject>Phase diagrams</subject><subject>Phase Transition</subject><subject>Physical Sciences</subject><subject>Polyhedrons</subject><subject>Pressure</subject><subject>Pyrites</subject><subject>Silicates - chemistry</subject><subject>Silicon Dioxide - chemistry</subject><subject>Super Earths</subject><subject>Temperature</subject><subject>Thermodynamics</subject><subject>Volume</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpVkc1u1DAUhS0EokNhzQrwjlXA13bi8QYJjfiTiopUurZuEjvjKomD7SDYljflSTBMOyob21fn8znSPYQ8BfYKmBKvlxlTeYGotQS2vUc2wDRUjdTsPtkwxlW1lVyekEcpXTHGdL1lD8kJB8604GpDwpdoe99lH2YaHEW6tz9wCDOO9MKf_76-pssek6XonC3UPNCUsfWjz96mvz8-D_-4XxTnnu7wdsh0WsfsJztgi5Eu0aa0luMxeeBwTPbJzX1KLt-_-7r7WJ2df_i0e3tWOd7IXIECBwB90_K-7rgEh7xtbYNOoW7qDh0XwmklnFW8RS0dNr20TDsOCkGKU_Lm4Lus7WT7zs454miW6CeMP01Ab_5XZr83Q_huBONa1aoYvLwxiOHbalM2k0-dHUecbViT2UpV67qss5DP70YdM26XfAcobR3lUpeRBnjNC_DsAFylHOKRKI0yKDlFf3HQHQaDQ_TJXF7w0joDLaTkIP4AINugPQ</recordid><startdate>20110125</startdate><enddate>20110125</enddate><creator>Tsuchiya, Taku</creator><creator>Tsuchiya, Jun</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110125</creationdate><title>Prediction of a hexagonal SiO₂ phase affecting stabilities of MgSiO₃ and CaSiO₃ at multimegabar pressures</title><author>Tsuchiya, Taku ; Tsuchiya, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-f264t-171f111d6b2d5c241fa2bbe6af7a965caf233f973fe72ba94fa6d4e09f217a143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Calcium Compounds - chemistry</topic><topic>Crystallization</topic><topic>Dioxides</topic><topic>Earth</topic><topic>Enthalpy</topic><topic>Extrasolar planets</topic><topic>Gas giants</topic><topic>Magnesium Compounds - chemistry</topic><topic>Models, Chemical</topic><topic>Models, Molecular</topic><topic>Phase diagrams</topic><topic>Phase Transition</topic><topic>Physical Sciences</topic><topic>Polyhedrons</topic><topic>Pressure</topic><topic>Pyrites</topic><topic>Silicates - chemistry</topic><topic>Silicon Dioxide - chemistry</topic><topic>Super Earths</topic><topic>Temperature</topic><topic>Thermodynamics</topic><topic>Volume</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsuchiya, Taku</creatorcontrib><creatorcontrib>Tsuchiya, Jun</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsuchiya, Taku</au><au>Tsuchiya, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of a hexagonal SiO₂ phase affecting stabilities of MgSiO₃ and CaSiO₃ at multimegabar pressures</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2011-01-25</date><risdate>2011</risdate><volume>108</volume><issue>4</issue><spage>1252</spage><epage>1255</epage><pages>1252-1255</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Ultrahigh-pressure phase relationship of SiO₂ silica in multimegabar pressure condition is still quite unclear. Here, we report a theoretical prediction on a previously uncharacterized stable structure of silica with an unexpected hexagonal Fe₂P-type form. This phase, more stable than the cotunnite-type structure, a previously postulated postpyrite phase, was discovered to stabilize at 640 GPa through a careful structure search by means of ab initio density functional computations over various structure models. This is the first evidential result of the pressure-induced phase transition to the Fe₂P-type structure among all dioxide compounds. The crystal structure consists of closely packed, fairly regular SiO₉ tricapped trigonal prisms with a significantly compact lattice. Additional investigation further elucidates large effects of this phase change in SiO₂ on the stability of MgSiO₃ and CaSiO₃ at multimegabar pressures. A postperovskite phase of MgSiO₃ breaks down at 1.04 TPa along an assumed adiabat of super-Earths and yields Fe₂P-type SiO₂ and CsCl (B2)-type MgO. CaSiO₃ perovskite, on the other hand, directly dissociates into SiO₂ and metallic CaO, skipping a postperovskite polymorph. Predicted ultrahigh-pressure and temperature phase diagrams of SiO₂, MgSiO₃, and CaSiO₃ indicate that the Fe₂P-type SiO₂ could be one of the dominant components in the deep mantles of terrestrial exoplanets and the cores of gas giants.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>21209327</pmid><doi>10.1073/pnas.1013594108</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2011-01, Vol.108 (4), p.1252-1255
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_847595580
source JSTOR Archival Journals and Primary Sources Collection【Remote access available】; PubMed Central
subjects Algorithms
Calcium Compounds - chemistry
Crystallization
Dioxides
Earth
Enthalpy
Extrasolar planets
Gas giants
Magnesium Compounds - chemistry
Models, Chemical
Models, Molecular
Phase diagrams
Phase Transition
Physical Sciences
Polyhedrons
Pressure
Pyrites
Silicates - chemistry
Silicon Dioxide - chemistry
Super Earths
Temperature
Thermodynamics
Volume
title Prediction of a hexagonal SiO₂ phase affecting stabilities of MgSiO₃ and CaSiO₃ at multimegabar pressures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A22%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20a%20hexagonal%20SiO%E2%82%82%20phase%20affecting%20stabilities%20of%20MgSiO%E2%82%83%20and%20CaSiO%E2%82%83%20at%20multimegabar%20pressures&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Tsuchiya,%20Taku&rft.date=2011-01-25&rft.volume=108&rft.issue=4&rft.spage=1252&rft.epage=1255&rft.pages=1252-1255&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1013594108&rft_dat=%3Cjstor_proqu%3E41001847%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-f264t-171f111d6b2d5c241fa2bbe6af7a965caf233f973fe72ba94fa6d4e09f217a143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=847595580&rft_id=info:pmid/21209327&rft_jstor_id=41001847&rfr_iscdi=true