Loading…

Ghrelin protects H9c2 cells from hydrogen peroxide-induced apoptosis through NF-κB and mitochondria-mediated signaling

Oxidative stress is a major mechanism underlying the pathogenesis of cardiovascular disease. Herein we investigate the protective effects of ghrelin in H2O2-induced apoptosis of H9c2 cells, as well as the possible molecular mechanisms involved. To study apoptosis, the cells were assessed by morpholo...

Full description

Saved in:
Bibliographic Details
Published in:European journal of pharmacology 2011-03, Vol.654 (2), p.142-149
Main Authors: Zhang, Qin, Huang, Wei-dong, Lv, Xue-ying, Yang, Yun-mei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Oxidative stress is a major mechanism underlying the pathogenesis of cardiovascular disease. Herein we investigate the protective effects of ghrelin in H2O2-induced apoptosis of H9c2 cells, as well as the possible molecular mechanisms involved. To study apoptosis, the cells were assessed by morphologic examination, MTS assay, Annexin V–propidium iodide dual staining and TUNEL analysis. Intracellular reactive oxygen species (ROS) production and mitochondrial membrane potential were also measured. To investigate the underlying molecular mechanisms, the expression of Bcl-2, Bax, active caspase-9 and NF-κB were assessed by Western blotting, and caspase-3 activity was determined by a colorimetric activity assay kit. After stimulation with H2O2 for 18h, H9c2 cells viability decreased significantly; a large fraction of cells underwent apoptosis. We observed a dose-dependent rescue of H9c2 cells from H2O2-induced apoptosis in the presence of different ghrelin concentrations. Preincubation with ghrelin also restored the ROS and mitochondrial membrane potential levels that had been altered by H2O2 treatment. Moreover, ghrelin decreased H2O2-induced Bax production and caspase-9 activation, and increased Bcl-2 levels. NF-κB phosphorylation was also significantly inhibited by ghrelin in H2O2-treated cells. Caspase-3 activation was suppressed by ghrelin in H2O2-treated H9c2 cells in a dose-dependent manner. In summary, ghrelin protects H9c2 cells from oxidative stress-induced apoptosis through downregulation of Bax expression, caspase-9 activation and NF-κB phosphorylation, and upregulation of Bcl-2 expression. Caspase-3 activation was also reduced in a dose-dependent manner. These data suggest that ghrelin might protect against cardiovascular disease by protecting the mitochondria.
ISSN:0014-2999
1879-0712
DOI:10.1016/j.ejphar.2010.12.011