Loading…
Frequency-Offset Cartesian Feedback for MRI Power Amplifier Linearization
High-quality magnetic resonance imaging (MRI) requires precise control of the transmit radio-frequency (RF) field. In parallel excitation applications such as transmit SENSE, high RF power linearity is essential to cancel aliased excitations. In widely-employed class AB power amplifiers, gain compre...
Saved in:
Published in: | IEEE transactions on medical imaging 2011-02, Vol.30 (2), p.512-522 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c474t-e971b8d279e9be1c5feb9c57bd568bff5cc5c08000d5dc8df7e7288e750920553 |
---|---|
cites | cdi_FETCH-LOGICAL-c474t-e971b8d279e9be1c5feb9c57bd568bff5cc5c08000d5dc8df7e7288e750920553 |
container_end_page | 522 |
container_issue | 2 |
container_start_page | 512 |
container_title | IEEE transactions on medical imaging |
container_volume | 30 |
creator | Zanchi, Marta G Stang, Pascal Kerr, Adam Pauly, John M Scott, Greig C |
description | High-quality magnetic resonance imaging (MRI) requires precise control of the transmit radio-frequency (RF) field. In parallel excitation applications such as transmit SENSE, high RF power linearity is essential to cancel aliased excitations. In widely-employed class AB power amplifiers, gain compression, cross-over distortion, memory effects, and thermal drift all distort the RF field modulation and can degrade image quality. Cartesian feedback (CF) linearization can mitigate these effects in MRI, if the quadrature mismatch and dc offset imperfections inherent in the architecture can be minimized. In this paper, we present a modified Cartesian feedback technique called "frequency-offset Cartesian feedback" (FOCF) that significantly reduces these problems. In the FOCF architecture, the feedback control is performed at a low intermediate frequency rather than dc, so that quadrature ghosts and dc errors are shifted outside the control bandwidth. FOCF linearization is demonstrated with a variety of typical MRI pulses. Simulation of the magnetization obtained with the Bloch equation demonstrates that high-fidelity RF reproduction can be obtained even with inexpensive class AB amplifiers. Finally, the enhanced RF fidelity of FOCF over CF is demonstrated with actual images obtained in a 1.5 T MRI system. |
doi_str_mv | 10.1109/TMI.2010.2087768 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_849431153</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5604697</ieee_id><sourcerecordid>2255160161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-e971b8d279e9be1c5feb9c57bd568bff5cc5c08000d5dc8df7e7288e750920553</originalsourceid><addsrcrecordid>eNqFkd9rFDEQx4NY7Fl9FwRZfOnTtpPs5teLUA5PD65UpIJvIZudaOre5kz2LPWvN-XOw_rSp5lhPvNlZr6EvKJwRino8-vL5RmDUjFQUgr1hMwo56pmvP36lMyASVUDCHZMnud8A0BbDvoZOWaguWainZHlIuHPLY7urr7yPuNUzW2aMAc7VgvEvrPuR-Vjqi4_L6tP8RZTdbHeDMGHkq3CiDaF33YKcXxBjrwdMr7cxxPyZfH-ev6xXl19WM4vVrVrZTvVqCXtVM-kRt0hddxjpx2XXc-F6rznznEHCgB63jvVe4mSKYWybM6A8-aEvNvpbrbdGnuH45TsYDYprG26M9EG87Azhu_mW_xlmvIayUQRON0LpFhOz5NZh-xwGOyIcZuNEgVshKaPk61uG0p5U8i3_5E3cZvG8ocCKUmVAF0g2EEuxZwT-sPSFMy9n6b4ae79NHs_y8ibf489DPw1sACvd0BAxEObC2iFls0fYbqkYA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>848718609</pqid></control><display><type>article</type><title>Frequency-Offset Cartesian Feedback for MRI Power Amplifier Linearization</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Zanchi, Marta G ; Stang, Pascal ; Kerr, Adam ; Pauly, John M ; Scott, Greig C</creator><creatorcontrib>Zanchi, Marta G ; Stang, Pascal ; Kerr, Adam ; Pauly, John M ; Scott, Greig C</creatorcontrib><description>High-quality magnetic resonance imaging (MRI) requires precise control of the transmit radio-frequency (RF) field. In parallel excitation applications such as transmit SENSE, high RF power linearity is essential to cancel aliased excitations. In widely-employed class AB power amplifiers, gain compression, cross-over distortion, memory effects, and thermal drift all distort the RF field modulation and can degrade image quality. Cartesian feedback (CF) linearization can mitigate these effects in MRI, if the quadrature mismatch and dc offset imperfections inherent in the architecture can be minimized. In this paper, we present a modified Cartesian feedback technique called "frequency-offset Cartesian feedback" (FOCF) that significantly reduces these problems. In the FOCF architecture, the feedback control is performed at a low intermediate frequency rather than dc, so that quadrature ghosts and dc errors are shifted outside the control bandwidth. FOCF linearization is demonstrated with a variety of typical MRI pulses. Simulation of the magnetization obtained with the Bloch equation demonstrates that high-fidelity RF reproduction can be obtained even with inexpensive class AB amplifiers. Finally, the enhanced RF fidelity of FOCF over CF is demonstrated with actual images obtained in a 1.5 T MRI system.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2010.2087768</identifier><identifier>PMID: 20959264</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Bandwidth ; Cartesian feedback ; control systems ; Couplers ; Feedback ; Fourier Analysis ; Frequency control ; Image Processing, Computer-Assisted - methods ; linearization ; Magnetic resonance imaging ; magnetic resonance imaging (MRI) ; Magnetic Resonance Imaging - instrumentation ; Magnetic Resonance Imaging - methods ; Mixers ; Phantoms, Imaging ; Power amplifiers ; Radio frequency ; radio-frequency (RF) power amplifiers ; Signal Processing, Computer-Assisted</subject><ispartof>IEEE transactions on medical imaging, 2011-02, Vol.30 (2), p.512-522</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2011</rights><rights>Copyright (c) 2010 IEEE. 2010</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-e971b8d279e9be1c5feb9c57bd568bff5cc5c08000d5dc8df7e7288e750920553</citedby><cites>FETCH-LOGICAL-c474t-e971b8d279e9be1c5feb9c57bd568bff5cc5c08000d5dc8df7e7288e750920553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5604697$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20959264$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zanchi, Marta G</creatorcontrib><creatorcontrib>Stang, Pascal</creatorcontrib><creatorcontrib>Kerr, Adam</creatorcontrib><creatorcontrib>Pauly, John M</creatorcontrib><creatorcontrib>Scott, Greig C</creatorcontrib><title>Frequency-Offset Cartesian Feedback for MRI Power Amplifier Linearization</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>High-quality magnetic resonance imaging (MRI) requires precise control of the transmit radio-frequency (RF) field. In parallel excitation applications such as transmit SENSE, high RF power linearity is essential to cancel aliased excitations. In widely-employed class AB power amplifiers, gain compression, cross-over distortion, memory effects, and thermal drift all distort the RF field modulation and can degrade image quality. Cartesian feedback (CF) linearization can mitigate these effects in MRI, if the quadrature mismatch and dc offset imperfections inherent in the architecture can be minimized. In this paper, we present a modified Cartesian feedback technique called "frequency-offset Cartesian feedback" (FOCF) that significantly reduces these problems. In the FOCF architecture, the feedback control is performed at a low intermediate frequency rather than dc, so that quadrature ghosts and dc errors are shifted outside the control bandwidth. FOCF linearization is demonstrated with a variety of typical MRI pulses. Simulation of the magnetization obtained with the Bloch equation demonstrates that high-fidelity RF reproduction can be obtained even with inexpensive class AB amplifiers. Finally, the enhanced RF fidelity of FOCF over CF is demonstrated with actual images obtained in a 1.5 T MRI system.</description><subject>Bandwidth</subject><subject>Cartesian feedback</subject><subject>control systems</subject><subject>Couplers</subject><subject>Feedback</subject><subject>Fourier Analysis</subject><subject>Frequency control</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>linearization</subject><subject>Magnetic resonance imaging</subject><subject>magnetic resonance imaging (MRI)</subject><subject>Magnetic Resonance Imaging - instrumentation</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Mixers</subject><subject>Phantoms, Imaging</subject><subject>Power amplifiers</subject><subject>Radio frequency</subject><subject>radio-frequency (RF) power amplifiers</subject><subject>Signal Processing, Computer-Assisted</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkd9rFDEQx4NY7Fl9FwRZfOnTtpPs5teLUA5PD65UpIJvIZudaOre5kz2LPWvN-XOw_rSp5lhPvNlZr6EvKJwRino8-vL5RmDUjFQUgr1hMwo56pmvP36lMyASVUDCHZMnud8A0BbDvoZOWaguWainZHlIuHPLY7urr7yPuNUzW2aMAc7VgvEvrPuR-Vjqi4_L6tP8RZTdbHeDMGHkq3CiDaF33YKcXxBjrwdMr7cxxPyZfH-ev6xXl19WM4vVrVrZTvVqCXtVM-kRt0hddxjpx2XXc-F6rznznEHCgB63jvVe4mSKYWybM6A8-aEvNvpbrbdGnuH45TsYDYprG26M9EG87Azhu_mW_xlmvIayUQRON0LpFhOz5NZh-xwGOyIcZuNEgVshKaPk61uG0p5U8i3_5E3cZvG8ocCKUmVAF0g2EEuxZwT-sPSFMy9n6b4ae79NHs_y8ibf489DPw1sACvd0BAxEObC2iFls0fYbqkYA</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Zanchi, Marta G</creator><creator>Stang, Pascal</creator><creator>Kerr, Adam</creator><creator>Pauly, John M</creator><creator>Scott, Greig C</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110201</creationdate><title>Frequency-Offset Cartesian Feedback for MRI Power Amplifier Linearization</title><author>Zanchi, Marta G ; Stang, Pascal ; Kerr, Adam ; Pauly, John M ; Scott, Greig C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-e971b8d279e9be1c5feb9c57bd568bff5cc5c08000d5dc8df7e7288e750920553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Bandwidth</topic><topic>Cartesian feedback</topic><topic>control systems</topic><topic>Couplers</topic><topic>Feedback</topic><topic>Fourier Analysis</topic><topic>Frequency control</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>linearization</topic><topic>Magnetic resonance imaging</topic><topic>magnetic resonance imaging (MRI)</topic><topic>Magnetic Resonance Imaging - instrumentation</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Mixers</topic><topic>Phantoms, Imaging</topic><topic>Power amplifiers</topic><topic>Radio frequency</topic><topic>radio-frequency (RF) power amplifiers</topic><topic>Signal Processing, Computer-Assisted</topic><toplevel>online_resources</toplevel><creatorcontrib>Zanchi, Marta G</creatorcontrib><creatorcontrib>Stang, Pascal</creatorcontrib><creatorcontrib>Kerr, Adam</creatorcontrib><creatorcontrib>Pauly, John M</creatorcontrib><creatorcontrib>Scott, Greig C</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zanchi, Marta G</au><au>Stang, Pascal</au><au>Kerr, Adam</au><au>Pauly, John M</au><au>Scott, Greig C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Frequency-Offset Cartesian Feedback for MRI Power Amplifier Linearization</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2011-02-01</date><risdate>2011</risdate><volume>30</volume><issue>2</issue><spage>512</spage><epage>522</epage><pages>512-522</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>High-quality magnetic resonance imaging (MRI) requires precise control of the transmit radio-frequency (RF) field. In parallel excitation applications such as transmit SENSE, high RF power linearity is essential to cancel aliased excitations. In widely-employed class AB power amplifiers, gain compression, cross-over distortion, memory effects, and thermal drift all distort the RF field modulation and can degrade image quality. Cartesian feedback (CF) linearization can mitigate these effects in MRI, if the quadrature mismatch and dc offset imperfections inherent in the architecture can be minimized. In this paper, we present a modified Cartesian feedback technique called "frequency-offset Cartesian feedback" (FOCF) that significantly reduces these problems. In the FOCF architecture, the feedback control is performed at a low intermediate frequency rather than dc, so that quadrature ghosts and dc errors are shifted outside the control bandwidth. FOCF linearization is demonstrated with a variety of typical MRI pulses. Simulation of the magnetization obtained with the Bloch equation demonstrates that high-fidelity RF reproduction can be obtained even with inexpensive class AB amplifiers. Finally, the enhanced RF fidelity of FOCF over CF is demonstrated with actual images obtained in a 1.5 T MRI system.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>20959264</pmid><doi>10.1109/TMI.2010.2087768</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-0062 |
ispartof | IEEE transactions on medical imaging, 2011-02, Vol.30 (2), p.512-522 |
issn | 0278-0062 1558-254X |
language | eng |
recordid | cdi_proquest_miscellaneous_849431153 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Bandwidth Cartesian feedback control systems Couplers Feedback Fourier Analysis Frequency control Image Processing, Computer-Assisted - methods linearization Magnetic resonance imaging magnetic resonance imaging (MRI) Magnetic Resonance Imaging - instrumentation Magnetic Resonance Imaging - methods Mixers Phantoms, Imaging Power amplifiers Radio frequency radio-frequency (RF) power amplifiers Signal Processing, Computer-Assisted |
title | Frequency-Offset Cartesian Feedback for MRI Power Amplifier Linearization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A50%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Frequency-Offset%20Cartesian%20Feedback%20for%20MRI%20Power%20Amplifier%20Linearization&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Zanchi,%20Marta%20G&rft.date=2011-02-01&rft.volume=30&rft.issue=2&rft.spage=512&rft.epage=522&rft.pages=512-522&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2010.2087768&rft_dat=%3Cproquest_cross%3E2255160161%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-e971b8d279e9be1c5feb9c57bd568bff5cc5c08000d5dc8df7e7288e750920553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=848718609&rft_id=info:pmid/20959264&rft_ieee_id=5604697&rfr_iscdi=true |