Loading…
Research on Component Law of Chinese Patent Medicine for Anti-influenza and Development of New Recipes for Anti-influenza by Unsupervised Data Mining Methods
Objective:To analyze the component law of Chinese patent medicines for anti-influenza and develop new prescriptions for anti-influenza by unsupervised data mining methods. Methods: Chinese patent medicine recipes for anti-influenza were collected and recorded in the database, and then the correlatio...
Saved in:
Published in: | Journal of traditional Chinese medicine 2010-12, Vol.30 (4), p.288-293 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c438t-837d52cce453e2bb9f89b093e786b58836c80ab5e14e530ced9e92d631a182d03 |
---|---|
cites | |
container_end_page | 293 |
container_issue | 4 |
container_start_page | 288 |
container_title | Journal of traditional Chinese medicine |
container_volume | 30 |
creator | 唐仕欢 陈建新 李耿 吴宏伟 陈畅 张娜 高娜 杨洪军 黄璐琦 |
description | Objective:To analyze the component law of Chinese patent medicines for anti-influenza and develop new prescriptions for anti-influenza by unsupervised data mining methods. Methods: Chinese patent medicine recipes for anti-influenza were collected and recorded in the database, and then the correlation coefficient between herbs, core combinations of herbs and new prescriptions were analyzed by using modified mutual information, complex system entropy cluster and unsupervised hierarchical clustering, respectively. Results: Based on analysis of 126 Chinese patent medicine recipes, the frequency of each herb occurrence in these recipes, 54 frequently-used herb pairs, 34 core combinations were determined, and 4 new recipes for influenza were developed. Conclusion: Unsupervised data mining methods are able to mine the component law quickly and develop new prescriptions. |
doi_str_mv | 10.1016/S0254-6272(10)60058-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_849432003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>36237405</cqvip_id><sourcerecordid>849432003</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-837d52cce453e2bb9f89b093e786b58836c80ab5e14e530ced9e92d631a182d03</originalsourceid><addsrcrecordid>eNptkMlOwzAQhn0A0bI8AsjiAhwCXuLEOVZllcoilnPkOBNqSOwQJ6DyLrwrrlpunEb65vtnNIPQPiWnlNDk7IkwEUcJS9kxJScJIUJGdAONAxYRyxgboW3v35ZcCLmFRowymaYyHaOfR_CgOj3HzuKpa1pnwfZ4pr6wq_B0bmzo4wfVL-ktlEYHgivX4YntTWRsVQ9gvxVWtsTn8Am1a5ulG9J38IUfQZsW_H-JYoFfrB9a6D6Nh5BWvcK3xhr7Gjb1c1f6XbRZqdrD3rruoJfLi-fpdTS7v7qZTmaRjrnsI8nTUjCtIRYcWFFklcwKknFIZVIIKXmiJVGFABqD4ERDmUHGyoRTRSUrCd9BR6u5bec-BvB93hivoa6VBTf4XMZZzBkhPJgHa3MoGijztjON6hb530eDcLgS9NzZ149wTF4o_V6ZGnKeMJ7GRPBfx8yEWQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>849432003</pqid></control><display><type>article</type><title>Research on Component Law of Chinese Patent Medicine for Anti-influenza and Development of New Recipes for Anti-influenza by Unsupervised Data Mining Methods</title><source>ScienceDirect®</source><source>Free E-Journal (出版社公開部分のみ)</source><creator>唐仕欢 陈建新 李耿 吴宏伟 陈畅 张娜 高娜 杨洪军 黄璐琦</creator><creatorcontrib>唐仕欢 陈建新 李耿 吴宏伟 陈畅 张娜 高娜 杨洪军 黄璐琦</creatorcontrib><description>Objective:To analyze the component law of Chinese patent medicines for anti-influenza and develop new prescriptions for anti-influenza by unsupervised data mining methods. Methods: Chinese patent medicine recipes for anti-influenza were collected and recorded in the database, and then the correlation coefficient between herbs, core combinations of herbs and new prescriptions were analyzed by using modified mutual information, complex system entropy cluster and unsupervised hierarchical clustering, respectively. Results: Based on analysis of 126 Chinese patent medicine recipes, the frequency of each herb occurrence in these recipes, 54 frequently-used herb pairs, 34 core combinations were determined, and 4 new recipes for influenza were developed. Conclusion: Unsupervised data mining methods are able to mine the component law quickly and develop new prescriptions.</description><identifier>ISSN: 0255-2922</identifier><identifier>DOI: 10.1016/S0254-6272(10)60058-1</identifier><identifier>PMID: 21287787</identifier><language>eng</language><publisher>China</publisher><subject>Antiviral Agents - analysis ; Antiviral Agents - therapeutic use ; Chemistry, Pharmaceutical ; Data Mining ; Drugs, Chinese Herbal - analysis ; Drugs, Chinese Herbal - therapeutic use ; Humans ; Influenza A Virus, H1N1 Subtype - drug effects ; Influenza A Virus, H1N1 Subtype - physiology ; Influenza, Human - drug therapy ; Influenza, Human - virology ; Nonprescription Drugs - analysis ; Nonprescription Drugs - therapeutic use ; 中国专利 ; 中成药 ; 基于构件 ; 挖掘方法 ; 新处方 ; 新配方</subject><ispartof>Journal of traditional Chinese medicine, 2010-12, Vol.30 (4), p.288-293</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-837d52cce453e2bb9f89b093e786b58836c80ab5e14e530ced9e92d631a182d03</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86801X/86801X.jpg</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21287787$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>唐仕欢 陈建新 李耿 吴宏伟 陈畅 张娜 高娜 杨洪军 黄璐琦</creatorcontrib><title>Research on Component Law of Chinese Patent Medicine for Anti-influenza and Development of New Recipes for Anti-influenza by Unsupervised Data Mining Methods</title><title>Journal of traditional Chinese medicine</title><addtitle>Journal of Traditional Chinese Medicine</addtitle><description>Objective:To analyze the component law of Chinese patent medicines for anti-influenza and develop new prescriptions for anti-influenza by unsupervised data mining methods. Methods: Chinese patent medicine recipes for anti-influenza were collected and recorded in the database, and then the correlation coefficient between herbs, core combinations of herbs and new prescriptions were analyzed by using modified mutual information, complex system entropy cluster and unsupervised hierarchical clustering, respectively. Results: Based on analysis of 126 Chinese patent medicine recipes, the frequency of each herb occurrence in these recipes, 54 frequently-used herb pairs, 34 core combinations were determined, and 4 new recipes for influenza were developed. Conclusion: Unsupervised data mining methods are able to mine the component law quickly and develop new prescriptions.</description><subject>Antiviral Agents - analysis</subject><subject>Antiviral Agents - therapeutic use</subject><subject>Chemistry, Pharmaceutical</subject><subject>Data Mining</subject><subject>Drugs, Chinese Herbal - analysis</subject><subject>Drugs, Chinese Herbal - therapeutic use</subject><subject>Humans</subject><subject>Influenza A Virus, H1N1 Subtype - drug effects</subject><subject>Influenza A Virus, H1N1 Subtype - physiology</subject><subject>Influenza, Human - drug therapy</subject><subject>Influenza, Human - virology</subject><subject>Nonprescription Drugs - analysis</subject><subject>Nonprescription Drugs - therapeutic use</subject><subject>中国专利</subject><subject>中成药</subject><subject>基于构件</subject><subject>挖掘方法</subject><subject>新处方</subject><subject>新配方</subject><issn>0255-2922</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNptkMlOwzAQhn0A0bI8AsjiAhwCXuLEOVZllcoilnPkOBNqSOwQJ6DyLrwrrlpunEb65vtnNIPQPiWnlNDk7IkwEUcJS9kxJScJIUJGdAONAxYRyxgboW3v35ZcCLmFRowymaYyHaOfR_CgOj3HzuKpa1pnwfZ4pr6wq_B0bmzo4wfVL-ktlEYHgivX4YntTWRsVQ9gvxVWtsTn8Am1a5ulG9J38IUfQZsW_H-JYoFfrB9a6D6Nh5BWvcK3xhr7Gjb1c1f6XbRZqdrD3rruoJfLi-fpdTS7v7qZTmaRjrnsI8nTUjCtIRYcWFFklcwKknFIZVIIKXmiJVGFABqD4ERDmUHGyoRTRSUrCd9BR6u5bec-BvB93hivoa6VBTf4XMZZzBkhPJgHa3MoGijztjON6hb530eDcLgS9NzZ149wTF4o_V6ZGnKeMJ7GRPBfx8yEWQ</recordid><startdate>20101201</startdate><enddate>20101201</enddate><creator>唐仕欢 陈建新 李耿 吴宏伟 陈畅 张娜 高娜 杨洪军 黄璐琦</creator><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20101201</creationdate><title>Research on Component Law of Chinese Patent Medicine for Anti-influenza and Development of New Recipes for Anti-influenza by Unsupervised Data Mining Methods</title><author>唐仕欢 陈建新 李耿 吴宏伟 陈畅 张娜 高娜 杨洪军 黄璐琦</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-837d52cce453e2bb9f89b093e786b58836c80ab5e14e530ced9e92d631a182d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Antiviral Agents - analysis</topic><topic>Antiviral Agents - therapeutic use</topic><topic>Chemistry, Pharmaceutical</topic><topic>Data Mining</topic><topic>Drugs, Chinese Herbal - analysis</topic><topic>Drugs, Chinese Herbal - therapeutic use</topic><topic>Humans</topic><topic>Influenza A Virus, H1N1 Subtype - drug effects</topic><topic>Influenza A Virus, H1N1 Subtype - physiology</topic><topic>Influenza, Human - drug therapy</topic><topic>Influenza, Human - virology</topic><topic>Nonprescription Drugs - analysis</topic><topic>Nonprescription Drugs - therapeutic use</topic><topic>中国专利</topic><topic>中成药</topic><topic>基于构件</topic><topic>挖掘方法</topic><topic>新处方</topic><topic>新配方</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>唐仕欢 陈建新 李耿 吴宏伟 陈畅 张娜 高娜 杨洪军 黄璐琦</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of traditional Chinese medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>唐仕欢 陈建新 李耿 吴宏伟 陈畅 张娜 高娜 杨洪军 黄璐琦</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on Component Law of Chinese Patent Medicine for Anti-influenza and Development of New Recipes for Anti-influenza by Unsupervised Data Mining Methods</atitle><jtitle>Journal of traditional Chinese medicine</jtitle><addtitle>Journal of Traditional Chinese Medicine</addtitle><date>2010-12-01</date><risdate>2010</risdate><volume>30</volume><issue>4</issue><spage>288</spage><epage>293</epage><pages>288-293</pages><issn>0255-2922</issn><abstract>Objective:To analyze the component law of Chinese patent medicines for anti-influenza and develop new prescriptions for anti-influenza by unsupervised data mining methods. Methods: Chinese patent medicine recipes for anti-influenza were collected and recorded in the database, and then the correlation coefficient between herbs, core combinations of herbs and new prescriptions were analyzed by using modified mutual information, complex system entropy cluster and unsupervised hierarchical clustering, respectively. Results: Based on analysis of 126 Chinese patent medicine recipes, the frequency of each herb occurrence in these recipes, 54 frequently-used herb pairs, 34 core combinations were determined, and 4 new recipes for influenza were developed. Conclusion: Unsupervised data mining methods are able to mine the component law quickly and develop new prescriptions.</abstract><cop>China</cop><pmid>21287787</pmid><doi>10.1016/S0254-6272(10)60058-1</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0255-2922 |
ispartof | Journal of traditional Chinese medicine, 2010-12, Vol.30 (4), p.288-293 |
issn | 0255-2922 |
language | eng |
recordid | cdi_proquest_miscellaneous_849432003 |
source | ScienceDirect®; Free E-Journal (出版社公開部分のみ) |
subjects | Antiviral Agents - analysis Antiviral Agents - therapeutic use Chemistry, Pharmaceutical Data Mining Drugs, Chinese Herbal - analysis Drugs, Chinese Herbal - therapeutic use Humans Influenza A Virus, H1N1 Subtype - drug effects Influenza A Virus, H1N1 Subtype - physiology Influenza, Human - drug therapy Influenza, Human - virology Nonprescription Drugs - analysis Nonprescription Drugs - therapeutic use 中国专利 中成药 基于构件 挖掘方法 新处方 新配方 |
title | Research on Component Law of Chinese Patent Medicine for Anti-influenza and Development of New Recipes for Anti-influenza by Unsupervised Data Mining Methods |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T12%3A38%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20Component%20Law%20of%20Chinese%20Patent%20Medicine%20for%20Anti-influenza%20and%20Development%20of%20New%20Recipes%20for%20Anti-influenza%20by%20Unsupervised%20Data%20Mining%20Methods&rft.jtitle=Journal%20of%20traditional%20Chinese%20medicine&rft.au=%E5%94%90%E4%BB%95%E6%AC%A2%20%E9%99%88%E5%BB%BA%E6%96%B0%20%E6%9D%8E%E8%80%BF%20%E5%90%B4%E5%AE%8F%E4%BC%9F%20%E9%99%88%E7%95%85%20%E5%BC%A0%E5%A8%9C%20%E9%AB%98%E5%A8%9C%20%E6%9D%A8%E6%B4%AA%E5%86%9B%20%E9%BB%84%E7%92%90%E7%90%A6&rft.date=2010-12-01&rft.volume=30&rft.issue=4&rft.spage=288&rft.epage=293&rft.pages=288-293&rft.issn=0255-2922&rft_id=info:doi/10.1016/S0254-6272(10)60058-1&rft_dat=%3Cproquest_pubme%3E849432003%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c438t-837d52cce453e2bb9f89b093e786b58836c80ab5e14e530ced9e92d631a182d03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=849432003&rft_id=info:pmid/21287787&rft_cqvip_id=36237405&rfr_iscdi=true |