Loading…
The steady-state modeling and optimization of a refrigeration system for high heat flux removal
Steady-state modeling and optimization of a refrigeration system for high heat flux removal, such as electronics cooling, is studied. The refrigeration cycle proposed consists of multiple evaporators, liquid accumulator, compressor, condenser and expansion valves. To obtain more efficient heat trans...
Saved in:
Published in: | Applied thermal engineering 2010-11, Vol.30 (16), p.2347-2356 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c392t-f94db8103b27c32eddc7c7ebd1f96a07a489223d06712f5b2054241b46557c8c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c392t-f94db8103b27c32eddc7c7ebd1f96a07a489223d06712f5b2054241b46557c8c3 |
container_end_page | 2356 |
container_issue | 16 |
container_start_page | 2347 |
container_title | Applied thermal engineering |
container_volume | 30 |
creator | Zhou, Rongliang Zhang, Tiejun Catano, Juan Wen, John T. Michna, Gregory J. Peles, Yoav Jensen, Michael K. |
description | Steady-state modeling and optimization of a refrigeration system for high heat flux removal, such as electronics cooling, is studied. The refrigeration cycle proposed consists of multiple evaporators, liquid accumulator, compressor, condenser and expansion valves. To obtain more efficient heat transfer and higher critical heat flux (CHF), the evaporators operate with two-phase flow only. This unique operating condition necessitates the inclusion of a liquid accumulator with integrated heater for the safe operation of the compressor. Due to the projected incorporation of microchannels into the system to enhance the heat transfer in heat sinks, the momentum balance equation, rarely seen in previous vapor compression cycle heat exchangers modeling efforts, is utilized in addition to the mass and energy balance equations to capture the expected significant microchannel pressure drop witnessed in previous experimental investigations. Using the steady-state model developed, a parametric study is performed to study the effect of various external inputs on the system performance. The Pareto optimization is applied to find the optimal system operating conditions for given heat loads such that the system coefficient of performance (COP) is optimized while satisfying the CHF and other system operation constraints. Initial validation efforts show the good agreement between the experimental data and model predictions. |
doi_str_mv | 10.1016/j.applthermaleng.2010.05.023 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_849452315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S135943111000219X</els_id><sourcerecordid>849452315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-f94db8103b27c32eddc7c7ebd1f96a07a489223d06712f5b2054241b46557c8c3</originalsourceid><addsrcrecordid>eNqNkEtrHDEQhOcQQxw7_0GHhJxmo-c8IBdjbCdgyGVzFj1Sa0eLZjSRtMbrX59Z1hhy86mh-6tqqqrqC6MbRlnzfb-BZQllxDRBwHm34XQ9UbWhXHyoLplQfS0FYx-rTznvKWW8a-VlpbcjklwQ7LHOBQqSKVoMft4RmC2JS_GTf4Hi40yiI0ASuuR3mM6rfFy1E3ExkdHvRjIiFOLC4XnlpvgE4bq6cBAyfn6dV9Wf-7vt7c_68ffDr9ubx9qInpfa9dIOHaNi4K0RHK01rWlxsMz1DdAWZNdzLixtWsadGjhVkks2yEap1nRGXFXfzr5Lin8PmIuefDYYAswYD1l3speKC6ZW8seZNCnmvMbRS_ITpKNmVJ-q1Hv9f5X6VKWmSq9VrvKvr48gGwguwWx8fvPggve86U_c_ZnDNfWTx6Sz8TgbtD6hKdpG_76H_wA2bZXb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>849452315</pqid></control><display><type>article</type><title>The steady-state modeling and optimization of a refrigeration system for high heat flux removal</title><source>ScienceDirect Journals</source><creator>Zhou, Rongliang ; Zhang, Tiejun ; Catano, Juan ; Wen, John T. ; Michna, Gregory J. ; Peles, Yoav ; Jensen, Michael K.</creator><creatorcontrib>Zhou, Rongliang ; Zhang, Tiejun ; Catano, Juan ; Wen, John T. ; Michna, Gregory J. ; Peles, Yoav ; Jensen, Michael K.</creatorcontrib><description>Steady-state modeling and optimization of a refrigeration system for high heat flux removal, such as electronics cooling, is studied. The refrigeration cycle proposed consists of multiple evaporators, liquid accumulator, compressor, condenser and expansion valves. To obtain more efficient heat transfer and higher critical heat flux (CHF), the evaporators operate with two-phase flow only. This unique operating condition necessitates the inclusion of a liquid accumulator with integrated heater for the safe operation of the compressor. Due to the projected incorporation of microchannels into the system to enhance the heat transfer in heat sinks, the momentum balance equation, rarely seen in previous vapor compression cycle heat exchangers modeling efforts, is utilized in addition to the mass and energy balance equations to capture the expected significant microchannel pressure drop witnessed in previous experimental investigations. Using the steady-state model developed, a parametric study is performed to study the effect of various external inputs on the system performance. The Pareto optimization is applied to find the optimal system operating conditions for given heat loads such that the system coefficient of performance (COP) is optimized while satisfying the CHF and other system operation constraints. Initial validation efforts show the good agreement between the experimental data and model predictions.</description><identifier>ISSN: 1359-4311</identifier><identifier>DOI: 10.1016/j.applthermaleng.2010.05.023</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Accumulators ; Applied sciences ; CHF ; COP ; Energy ; Energy. Thermal use of fuels ; Engines and turbines ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Heat flux ; Heat transfer ; High heat flux ; Liquids ; Mathematical analysis ; Mathematical models ; Optimization ; Pareto optimization ; Refrigerating engineering ; Refrigerating engineering. Cryogenics. Food conservation ; Refrigeration ; Techniques. Materials ; Theoretical studies. Data and constants. Metering ; Vapor compression cycle</subject><ispartof>Applied thermal engineering, 2010-11, Vol.30 (16), p.2347-2356</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-f94db8103b27c32eddc7c7ebd1f96a07a489223d06712f5b2054241b46557c8c3</citedby><cites>FETCH-LOGICAL-c392t-f94db8103b27c32eddc7c7ebd1f96a07a489223d06712f5b2054241b46557c8c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23292693$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Rongliang</creatorcontrib><creatorcontrib>Zhang, Tiejun</creatorcontrib><creatorcontrib>Catano, Juan</creatorcontrib><creatorcontrib>Wen, John T.</creatorcontrib><creatorcontrib>Michna, Gregory J.</creatorcontrib><creatorcontrib>Peles, Yoav</creatorcontrib><creatorcontrib>Jensen, Michael K.</creatorcontrib><title>The steady-state modeling and optimization of a refrigeration system for high heat flux removal</title><title>Applied thermal engineering</title><description>Steady-state modeling and optimization of a refrigeration system for high heat flux removal, such as electronics cooling, is studied. The refrigeration cycle proposed consists of multiple evaporators, liquid accumulator, compressor, condenser and expansion valves. To obtain more efficient heat transfer and higher critical heat flux (CHF), the evaporators operate with two-phase flow only. This unique operating condition necessitates the inclusion of a liquid accumulator with integrated heater for the safe operation of the compressor. Due to the projected incorporation of microchannels into the system to enhance the heat transfer in heat sinks, the momentum balance equation, rarely seen in previous vapor compression cycle heat exchangers modeling efforts, is utilized in addition to the mass and energy balance equations to capture the expected significant microchannel pressure drop witnessed in previous experimental investigations. Using the steady-state model developed, a parametric study is performed to study the effect of various external inputs on the system performance. The Pareto optimization is applied to find the optimal system operating conditions for given heat loads such that the system coefficient of performance (COP) is optimized while satisfying the CHF and other system operation constraints. Initial validation efforts show the good agreement between the experimental data and model predictions.</description><subject>Accumulators</subject><subject>Applied sciences</subject><subject>CHF</subject><subject>COP</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Engines and turbines</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>High heat flux</subject><subject>Liquids</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Pareto optimization</subject><subject>Refrigerating engineering</subject><subject>Refrigerating engineering. Cryogenics. Food conservation</subject><subject>Refrigeration</subject><subject>Techniques. Materials</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>Vapor compression cycle</subject><issn>1359-4311</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNkEtrHDEQhOcQQxw7_0GHhJxmo-c8IBdjbCdgyGVzFj1Sa0eLZjSRtMbrX59Z1hhy86mh-6tqqqrqC6MbRlnzfb-BZQllxDRBwHm34XQ9UbWhXHyoLplQfS0FYx-rTznvKWW8a-VlpbcjklwQ7LHOBQqSKVoMft4RmC2JS_GTf4Hi40yiI0ASuuR3mM6rfFy1E3ExkdHvRjIiFOLC4XnlpvgE4bq6cBAyfn6dV9Wf-7vt7c_68ffDr9ubx9qInpfa9dIOHaNi4K0RHK01rWlxsMz1DdAWZNdzLixtWsadGjhVkks2yEap1nRGXFXfzr5Lin8PmIuefDYYAswYD1l3speKC6ZW8seZNCnmvMbRS_ITpKNmVJ-q1Hv9f5X6VKWmSq9VrvKvr48gGwguwWx8fvPggve86U_c_ZnDNfWTx6Sz8TgbtD6hKdpG_76H_wA2bZXb</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Zhou, Rongliang</creator><creator>Zhang, Tiejun</creator><creator>Catano, Juan</creator><creator>Wen, John T.</creator><creator>Michna, Gregory J.</creator><creator>Peles, Yoav</creator><creator>Jensen, Michael K.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20101101</creationdate><title>The steady-state modeling and optimization of a refrigeration system for high heat flux removal</title><author>Zhou, Rongliang ; Zhang, Tiejun ; Catano, Juan ; Wen, John T. ; Michna, Gregory J. ; Peles, Yoav ; Jensen, Michael K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-f94db8103b27c32eddc7c7ebd1f96a07a489223d06712f5b2054241b46557c8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Accumulators</topic><topic>Applied sciences</topic><topic>CHF</topic><topic>COP</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Engines and turbines</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>High heat flux</topic><topic>Liquids</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Pareto optimization</topic><topic>Refrigerating engineering</topic><topic>Refrigerating engineering. Cryogenics. Food conservation</topic><topic>Refrigeration</topic><topic>Techniques. Materials</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>Vapor compression cycle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Rongliang</creatorcontrib><creatorcontrib>Zhang, Tiejun</creatorcontrib><creatorcontrib>Catano, Juan</creatorcontrib><creatorcontrib>Wen, John T.</creatorcontrib><creatorcontrib>Michna, Gregory J.</creatorcontrib><creatorcontrib>Peles, Yoav</creatorcontrib><creatorcontrib>Jensen, Michael K.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Applied thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Rongliang</au><au>Zhang, Tiejun</au><au>Catano, Juan</au><au>Wen, John T.</au><au>Michna, Gregory J.</au><au>Peles, Yoav</au><au>Jensen, Michael K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The steady-state modeling and optimization of a refrigeration system for high heat flux removal</atitle><jtitle>Applied thermal engineering</jtitle><date>2010-11-01</date><risdate>2010</risdate><volume>30</volume><issue>16</issue><spage>2347</spage><epage>2356</epage><pages>2347-2356</pages><issn>1359-4311</issn><abstract>Steady-state modeling and optimization of a refrigeration system for high heat flux removal, such as electronics cooling, is studied. The refrigeration cycle proposed consists of multiple evaporators, liquid accumulator, compressor, condenser and expansion valves. To obtain more efficient heat transfer and higher critical heat flux (CHF), the evaporators operate with two-phase flow only. This unique operating condition necessitates the inclusion of a liquid accumulator with integrated heater for the safe operation of the compressor. Due to the projected incorporation of microchannels into the system to enhance the heat transfer in heat sinks, the momentum balance equation, rarely seen in previous vapor compression cycle heat exchangers modeling efforts, is utilized in addition to the mass and energy balance equations to capture the expected significant microchannel pressure drop witnessed in previous experimental investigations. Using the steady-state model developed, a parametric study is performed to study the effect of various external inputs on the system performance. The Pareto optimization is applied to find the optimal system operating conditions for given heat loads such that the system coefficient of performance (COP) is optimized while satisfying the CHF and other system operation constraints. Initial validation efforts show the good agreement between the experimental data and model predictions.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.applthermaleng.2010.05.023</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-4311 |
ispartof | Applied thermal engineering, 2010-11, Vol.30 (16), p.2347-2356 |
issn | 1359-4311 |
language | eng |
recordid | cdi_proquest_miscellaneous_849452315 |
source | ScienceDirect Journals |
subjects | Accumulators Applied sciences CHF COP Energy Energy. Thermal use of fuels Engines and turbines Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology Heat flux Heat transfer High heat flux Liquids Mathematical analysis Mathematical models Optimization Pareto optimization Refrigerating engineering Refrigerating engineering. Cryogenics. Food conservation Refrigeration Techniques. Materials Theoretical studies. Data and constants. Metering Vapor compression cycle |
title | The steady-state modeling and optimization of a refrigeration system for high heat flux removal |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A46%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20steady-state%20modeling%20and%20optimization%20of%20a%20refrigeration%20system%20for%20high%20heat%20flux%20removal&rft.jtitle=Applied%20thermal%20engineering&rft.au=Zhou,%20Rongliang&rft.date=2010-11-01&rft.volume=30&rft.issue=16&rft.spage=2347&rft.epage=2356&rft.pages=2347-2356&rft.issn=1359-4311&rft_id=info:doi/10.1016/j.applthermaleng.2010.05.023&rft_dat=%3Cproquest_cross%3E849452315%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-f94db8103b27c32eddc7c7ebd1f96a07a489223d06712f5b2054241b46557c8c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=849452315&rft_id=info:pmid/&rfr_iscdi=true |