Loading…

The steady-state modeling and optimization of a refrigeration system for high heat flux removal

Steady-state modeling and optimization of a refrigeration system for high heat flux removal, such as electronics cooling, is studied. The refrigeration cycle proposed consists of multiple evaporators, liquid accumulator, compressor, condenser and expansion valves. To obtain more efficient heat trans...

Full description

Saved in:
Bibliographic Details
Published in:Applied thermal engineering 2010-11, Vol.30 (16), p.2347-2356
Main Authors: Zhou, Rongliang, Zhang, Tiejun, Catano, Juan, Wen, John T., Michna, Gregory J., Peles, Yoav, Jensen, Michael K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c392t-f94db8103b27c32eddc7c7ebd1f96a07a489223d06712f5b2054241b46557c8c3
cites cdi_FETCH-LOGICAL-c392t-f94db8103b27c32eddc7c7ebd1f96a07a489223d06712f5b2054241b46557c8c3
container_end_page 2356
container_issue 16
container_start_page 2347
container_title Applied thermal engineering
container_volume 30
creator Zhou, Rongliang
Zhang, Tiejun
Catano, Juan
Wen, John T.
Michna, Gregory J.
Peles, Yoav
Jensen, Michael K.
description Steady-state modeling and optimization of a refrigeration system for high heat flux removal, such as electronics cooling, is studied. The refrigeration cycle proposed consists of multiple evaporators, liquid accumulator, compressor, condenser and expansion valves. To obtain more efficient heat transfer and higher critical heat flux (CHF), the evaporators operate with two-phase flow only. This unique operating condition necessitates the inclusion of a liquid accumulator with integrated heater for the safe operation of the compressor. Due to the projected incorporation of microchannels into the system to enhance the heat transfer in heat sinks, the momentum balance equation, rarely seen in previous vapor compression cycle heat exchangers modeling efforts, is utilized in addition to the mass and energy balance equations to capture the expected significant microchannel pressure drop witnessed in previous experimental investigations. Using the steady-state model developed, a parametric study is performed to study the effect of various external inputs on the system performance. The Pareto optimization is applied to find the optimal system operating conditions for given heat loads such that the system coefficient of performance (COP) is optimized while satisfying the CHF and other system operation constraints. Initial validation efforts show the good agreement between the experimental data and model predictions.
doi_str_mv 10.1016/j.applthermaleng.2010.05.023
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_849452315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S135943111000219X</els_id><sourcerecordid>849452315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-f94db8103b27c32eddc7c7ebd1f96a07a489223d06712f5b2054241b46557c8c3</originalsourceid><addsrcrecordid>eNqNkEtrHDEQhOcQQxw7_0GHhJxmo-c8IBdjbCdgyGVzFj1Sa0eLZjSRtMbrX59Z1hhy86mh-6tqqqrqC6MbRlnzfb-BZQllxDRBwHm34XQ9UbWhXHyoLplQfS0FYx-rTznvKWW8a-VlpbcjklwQ7LHOBQqSKVoMft4RmC2JS_GTf4Hi40yiI0ASuuR3mM6rfFy1E3ExkdHvRjIiFOLC4XnlpvgE4bq6cBAyfn6dV9Wf-7vt7c_68ffDr9ubx9qInpfa9dIOHaNi4K0RHK01rWlxsMz1DdAWZNdzLixtWsadGjhVkks2yEap1nRGXFXfzr5Lin8PmIuefDYYAswYD1l3speKC6ZW8seZNCnmvMbRS_ITpKNmVJ-q1Hv9f5X6VKWmSq9VrvKvr48gGwguwWx8fvPggve86U_c_ZnDNfWTx6Sz8TgbtD6hKdpG_76H_wA2bZXb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>849452315</pqid></control><display><type>article</type><title>The steady-state modeling and optimization of a refrigeration system for high heat flux removal</title><source>ScienceDirect Journals</source><creator>Zhou, Rongliang ; Zhang, Tiejun ; Catano, Juan ; Wen, John T. ; Michna, Gregory J. ; Peles, Yoav ; Jensen, Michael K.</creator><creatorcontrib>Zhou, Rongliang ; Zhang, Tiejun ; Catano, Juan ; Wen, John T. ; Michna, Gregory J. ; Peles, Yoav ; Jensen, Michael K.</creatorcontrib><description>Steady-state modeling and optimization of a refrigeration system for high heat flux removal, such as electronics cooling, is studied. The refrigeration cycle proposed consists of multiple evaporators, liquid accumulator, compressor, condenser and expansion valves. To obtain more efficient heat transfer and higher critical heat flux (CHF), the evaporators operate with two-phase flow only. This unique operating condition necessitates the inclusion of a liquid accumulator with integrated heater for the safe operation of the compressor. Due to the projected incorporation of microchannels into the system to enhance the heat transfer in heat sinks, the momentum balance equation, rarely seen in previous vapor compression cycle heat exchangers modeling efforts, is utilized in addition to the mass and energy balance equations to capture the expected significant microchannel pressure drop witnessed in previous experimental investigations. Using the steady-state model developed, a parametric study is performed to study the effect of various external inputs on the system performance. The Pareto optimization is applied to find the optimal system operating conditions for given heat loads such that the system coefficient of performance (COP) is optimized while satisfying the CHF and other system operation constraints. Initial validation efforts show the good agreement between the experimental data and model predictions.</description><identifier>ISSN: 1359-4311</identifier><identifier>DOI: 10.1016/j.applthermaleng.2010.05.023</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Accumulators ; Applied sciences ; CHF ; COP ; Energy ; Energy. Thermal use of fuels ; Engines and turbines ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Heat flux ; Heat transfer ; High heat flux ; Liquids ; Mathematical analysis ; Mathematical models ; Optimization ; Pareto optimization ; Refrigerating engineering ; Refrigerating engineering. Cryogenics. Food conservation ; Refrigeration ; Techniques. Materials ; Theoretical studies. Data and constants. Metering ; Vapor compression cycle</subject><ispartof>Applied thermal engineering, 2010-11, Vol.30 (16), p.2347-2356</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-f94db8103b27c32eddc7c7ebd1f96a07a489223d06712f5b2054241b46557c8c3</citedby><cites>FETCH-LOGICAL-c392t-f94db8103b27c32eddc7c7ebd1f96a07a489223d06712f5b2054241b46557c8c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23292693$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Rongliang</creatorcontrib><creatorcontrib>Zhang, Tiejun</creatorcontrib><creatorcontrib>Catano, Juan</creatorcontrib><creatorcontrib>Wen, John T.</creatorcontrib><creatorcontrib>Michna, Gregory J.</creatorcontrib><creatorcontrib>Peles, Yoav</creatorcontrib><creatorcontrib>Jensen, Michael K.</creatorcontrib><title>The steady-state modeling and optimization of a refrigeration system for high heat flux removal</title><title>Applied thermal engineering</title><description>Steady-state modeling and optimization of a refrigeration system for high heat flux removal, such as electronics cooling, is studied. The refrigeration cycle proposed consists of multiple evaporators, liquid accumulator, compressor, condenser and expansion valves. To obtain more efficient heat transfer and higher critical heat flux (CHF), the evaporators operate with two-phase flow only. This unique operating condition necessitates the inclusion of a liquid accumulator with integrated heater for the safe operation of the compressor. Due to the projected incorporation of microchannels into the system to enhance the heat transfer in heat sinks, the momentum balance equation, rarely seen in previous vapor compression cycle heat exchangers modeling efforts, is utilized in addition to the mass and energy balance equations to capture the expected significant microchannel pressure drop witnessed in previous experimental investigations. Using the steady-state model developed, a parametric study is performed to study the effect of various external inputs on the system performance. The Pareto optimization is applied to find the optimal system operating conditions for given heat loads such that the system coefficient of performance (COP) is optimized while satisfying the CHF and other system operation constraints. Initial validation efforts show the good agreement between the experimental data and model predictions.</description><subject>Accumulators</subject><subject>Applied sciences</subject><subject>CHF</subject><subject>COP</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Engines and turbines</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>High heat flux</subject><subject>Liquids</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Pareto optimization</subject><subject>Refrigerating engineering</subject><subject>Refrigerating engineering. Cryogenics. Food conservation</subject><subject>Refrigeration</subject><subject>Techniques. Materials</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>Vapor compression cycle</subject><issn>1359-4311</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNkEtrHDEQhOcQQxw7_0GHhJxmo-c8IBdjbCdgyGVzFj1Sa0eLZjSRtMbrX59Z1hhy86mh-6tqqqrqC6MbRlnzfb-BZQllxDRBwHm34XQ9UbWhXHyoLplQfS0FYx-rTznvKWW8a-VlpbcjklwQ7LHOBQqSKVoMft4RmC2JS_GTf4Hi40yiI0ASuuR3mM6rfFy1E3ExkdHvRjIiFOLC4XnlpvgE4bq6cBAyfn6dV9Wf-7vt7c_68ffDr9ubx9qInpfa9dIOHaNi4K0RHK01rWlxsMz1DdAWZNdzLixtWsadGjhVkks2yEap1nRGXFXfzr5Lin8PmIuefDYYAswYD1l3speKC6ZW8seZNCnmvMbRS_ITpKNmVJ-q1Hv9f5X6VKWmSq9VrvKvr48gGwguwWx8fvPggve86U_c_ZnDNfWTx6Sz8TgbtD6hKdpG_76H_wA2bZXb</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Zhou, Rongliang</creator><creator>Zhang, Tiejun</creator><creator>Catano, Juan</creator><creator>Wen, John T.</creator><creator>Michna, Gregory J.</creator><creator>Peles, Yoav</creator><creator>Jensen, Michael K.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20101101</creationdate><title>The steady-state modeling and optimization of a refrigeration system for high heat flux removal</title><author>Zhou, Rongliang ; Zhang, Tiejun ; Catano, Juan ; Wen, John T. ; Michna, Gregory J. ; Peles, Yoav ; Jensen, Michael K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-f94db8103b27c32eddc7c7ebd1f96a07a489223d06712f5b2054241b46557c8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Accumulators</topic><topic>Applied sciences</topic><topic>CHF</topic><topic>COP</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Engines and turbines</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>High heat flux</topic><topic>Liquids</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Pareto optimization</topic><topic>Refrigerating engineering</topic><topic>Refrigerating engineering. Cryogenics. Food conservation</topic><topic>Refrigeration</topic><topic>Techniques. Materials</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>Vapor compression cycle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Rongliang</creatorcontrib><creatorcontrib>Zhang, Tiejun</creatorcontrib><creatorcontrib>Catano, Juan</creatorcontrib><creatorcontrib>Wen, John T.</creatorcontrib><creatorcontrib>Michna, Gregory J.</creatorcontrib><creatorcontrib>Peles, Yoav</creatorcontrib><creatorcontrib>Jensen, Michael K.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Applied thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Rongliang</au><au>Zhang, Tiejun</au><au>Catano, Juan</au><au>Wen, John T.</au><au>Michna, Gregory J.</au><au>Peles, Yoav</au><au>Jensen, Michael K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The steady-state modeling and optimization of a refrigeration system for high heat flux removal</atitle><jtitle>Applied thermal engineering</jtitle><date>2010-11-01</date><risdate>2010</risdate><volume>30</volume><issue>16</issue><spage>2347</spage><epage>2356</epage><pages>2347-2356</pages><issn>1359-4311</issn><abstract>Steady-state modeling and optimization of a refrigeration system for high heat flux removal, such as electronics cooling, is studied. The refrigeration cycle proposed consists of multiple evaporators, liquid accumulator, compressor, condenser and expansion valves. To obtain more efficient heat transfer and higher critical heat flux (CHF), the evaporators operate with two-phase flow only. This unique operating condition necessitates the inclusion of a liquid accumulator with integrated heater for the safe operation of the compressor. Due to the projected incorporation of microchannels into the system to enhance the heat transfer in heat sinks, the momentum balance equation, rarely seen in previous vapor compression cycle heat exchangers modeling efforts, is utilized in addition to the mass and energy balance equations to capture the expected significant microchannel pressure drop witnessed in previous experimental investigations. Using the steady-state model developed, a parametric study is performed to study the effect of various external inputs on the system performance. The Pareto optimization is applied to find the optimal system operating conditions for given heat loads such that the system coefficient of performance (COP) is optimized while satisfying the CHF and other system operation constraints. Initial validation efforts show the good agreement between the experimental data and model predictions.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.applthermaleng.2010.05.023</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1359-4311
ispartof Applied thermal engineering, 2010-11, Vol.30 (16), p.2347-2356
issn 1359-4311
language eng
recordid cdi_proquest_miscellaneous_849452315
source ScienceDirect Journals
subjects Accumulators
Applied sciences
CHF
COP
Energy
Energy. Thermal use of fuels
Engines and turbines
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Heat flux
Heat transfer
High heat flux
Liquids
Mathematical analysis
Mathematical models
Optimization
Pareto optimization
Refrigerating engineering
Refrigerating engineering. Cryogenics. Food conservation
Refrigeration
Techniques. Materials
Theoretical studies. Data and constants. Metering
Vapor compression cycle
title The steady-state modeling and optimization of a refrigeration system for high heat flux removal
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A46%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20steady-state%20modeling%20and%20optimization%20of%20a%20refrigeration%20system%20for%20high%20heat%20flux%20removal&rft.jtitle=Applied%20thermal%20engineering&rft.au=Zhou,%20Rongliang&rft.date=2010-11-01&rft.volume=30&rft.issue=16&rft.spage=2347&rft.epage=2356&rft.pages=2347-2356&rft.issn=1359-4311&rft_id=info:doi/10.1016/j.applthermaleng.2010.05.023&rft_dat=%3Cproquest_cross%3E849452315%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-f94db8103b27c32eddc7c7ebd1f96a07a489223d06712f5b2054241b46557c8c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=849452315&rft_id=info:pmid/&rfr_iscdi=true