Loading…
The excitation and propagation of elastic waves in multilayered anisotropic composites
Using an integral approach wave fields, excited by dynamic action on composite materials with an arbitrary anisotropy of the elastic properties of their layers, are expressed in the form of the convolution of a Green's matrix with the stress vector of the specified load. The construction of a F...
Saved in:
Published in: | Journal of applied mathematics and mechanics 2010, Vol.74 (3), p.297-305 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c386t-98ddd0ba91cb05980f95f83e9a41dfab27411de8cde209adf86149fc9b78ee4f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c386t-98ddd0ba91cb05980f95f83e9a41dfab27411de8cde209adf86149fc9b78ee4f3 |
container_end_page | 305 |
container_issue | 3 |
container_start_page | 297 |
container_title | Journal of applied mathematics and mechanics |
container_volume | 74 |
creator | Glushkov, Ye.V. Glushkova, N.V. Krivonos, A.S. |
description | Using an integral approach wave fields, excited by dynamic action on composite materials with an arbitrary anisotropy of the elastic properties of their layers, are expressed in the form of the convolution of a Green's matrix with the stress vector of the specified load. The construction of a Fourier symbol of Green's matrix and the location of their poles and residues in them, which gives the asymptotic form of the surface and channel waves, plays a key role in determining the dynamic reaction of the material and in analysing the wave fields. Unlike the representations of classical modal analysis, the latter takes into account not only the characteristics of the material but also of the source. A brief description of the general scheme of wave analysis is given and test numerical examples are presented, as well as examples of the effect of the material structure on the energy characteristics and directivity of the radiation of waves excited in them by surface piezoactuators. |
doi_str_mv | 10.1016/j.jappmathmech.2010.07.005 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_849457740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021892810000869</els_id><sourcerecordid>849457740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-98ddd0ba91cb05980f95f83e9a41dfab27411de8cde209adf86149fc9b78ee4f3</originalsourceid><addsrcrecordid>eNqNUEtPwzAMrhBIjMd_qJAQpw2n7daEGxpPCYnL4Bp5icMytU1JMmD_nkyb0I6cbMvfw_6y7ILBiAGbXC9HS-z7FuOiJbUYFZAWUI8AxgfZAKBgQy4KfrjXH2cnISwBWA0TPsjeZwvK6UfZiNG6LsdO5713PX5sZ2dyajBEq_Jv_KKQ2y5vV020Da7Jk04EG1xMjIRQru1dsJHCWXZksAl0vqun2dvD_Wz6NHx5fXye3r4MVckncSi41hrmKJiaw1hwMGJseEkCK6YNzou6YkwTV5oKEKgNn7BKGCXmNSeqTHmaXW11082fKwpRtjYoahrsyK2C5JWoxnVdQULebJHKuxA8Gdl726JfSwZyk6Vcyv0s5SZLCbVMWSby5c4Gg8LGeOyUDX8KRVmUooKNyd0WR-nnL0teBmWpU6StJxWldvY_dr8EjJPS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>849457740</pqid></control><display><type>article</type><title>The excitation and propagation of elastic waves in multilayered anisotropic composites</title><source>ScienceDirect Journals</source><creator>Glushkov, Ye.V. ; Glushkova, N.V. ; Krivonos, A.S.</creator><creatorcontrib>Glushkov, Ye.V. ; Glushkova, N.V. ; Krivonos, A.S.</creatorcontrib><description>Using an integral approach wave fields, excited by dynamic action on composite materials with an arbitrary anisotropy of the elastic properties of their layers, are expressed in the form of the convolution of a Green's matrix with the stress vector of the specified load. The construction of a Fourier symbol of Green's matrix and the location of their poles and residues in them, which gives the asymptotic form of the surface and channel waves, plays a key role in determining the dynamic reaction of the material and in analysing the wave fields. Unlike the representations of classical modal analysis, the latter takes into account not only the characteristics of the material but also of the source. A brief description of the general scheme of wave analysis is given and test numerical examples are presented, as well as examples of the effect of the material structure on the energy characteristics and directivity of the radiation of waves excited in them by surface piezoactuators.</description><identifier>ISSN: 0021-8928</identifier><identifier>EISSN: 0021-8928</identifier><identifier>DOI: 10.1016/j.jappmathmech.2010.07.005</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Anisotropy ; Asymptotic properties ; Channels ; Dynamics ; Elastic waves ; Exact sciences and technology ; Excitation ; Fundamental areas of phenomenology (including applications) ; Loads (forces) ; Physics ; Solid mechanics ; Static elasticity (thermoelasticity...) ; Structural and continuum mechanics ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) ; Wave propagation</subject><ispartof>Journal of applied mathematics and mechanics, 2010, Vol.74 (3), p.297-305</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-98ddd0ba91cb05980f95f83e9a41dfab27411de8cde209adf86149fc9b78ee4f3</citedby><cites>FETCH-LOGICAL-c386t-98ddd0ba91cb05980f95f83e9a41dfab27411de8cde209adf86149fc9b78ee4f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4009,27902,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23239400$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Glushkov, Ye.V.</creatorcontrib><creatorcontrib>Glushkova, N.V.</creatorcontrib><creatorcontrib>Krivonos, A.S.</creatorcontrib><title>The excitation and propagation of elastic waves in multilayered anisotropic composites</title><title>Journal of applied mathematics and mechanics</title><description>Using an integral approach wave fields, excited by dynamic action on composite materials with an arbitrary anisotropy of the elastic properties of their layers, are expressed in the form of the convolution of a Green's matrix with the stress vector of the specified load. The construction of a Fourier symbol of Green's matrix and the location of their poles and residues in them, which gives the asymptotic form of the surface and channel waves, plays a key role in determining the dynamic reaction of the material and in analysing the wave fields. Unlike the representations of classical modal analysis, the latter takes into account not only the characteristics of the material but also of the source. A brief description of the general scheme of wave analysis is given and test numerical examples are presented, as well as examples of the effect of the material structure on the energy characteristics and directivity of the radiation of waves excited in them by surface piezoactuators.</description><subject>Anisotropy</subject><subject>Asymptotic properties</subject><subject>Channels</subject><subject>Dynamics</subject><subject>Elastic waves</subject><subject>Exact sciences and technology</subject><subject>Excitation</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Loads (forces)</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Structural and continuum mechanics</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><subject>Wave propagation</subject><issn>0021-8928</issn><issn>0021-8928</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNUEtPwzAMrhBIjMd_qJAQpw2n7daEGxpPCYnL4Bp5icMytU1JMmD_nkyb0I6cbMvfw_6y7ILBiAGbXC9HS-z7FuOiJbUYFZAWUI8AxgfZAKBgQy4KfrjXH2cnISwBWA0TPsjeZwvK6UfZiNG6LsdO5713PX5sZ2dyajBEq_Jv_KKQ2y5vV020Da7Jk04EG1xMjIRQru1dsJHCWXZksAl0vqun2dvD_Wz6NHx5fXye3r4MVckncSi41hrmKJiaw1hwMGJseEkCK6YNzou6YkwTV5oKEKgNn7BKGCXmNSeqTHmaXW11082fKwpRtjYoahrsyK2C5JWoxnVdQULebJHKuxA8Gdl726JfSwZyk6Vcyv0s5SZLCbVMWSby5c4Gg8LGeOyUDX8KRVmUooKNyd0WR-nnL0teBmWpU6StJxWldvY_dr8EjJPS</recordid><startdate>2010</startdate><enddate>2010</enddate><creator>Glushkov, Ye.V.</creator><creator>Glushkova, N.V.</creator><creator>Krivonos, A.S.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>2010</creationdate><title>The excitation and propagation of elastic waves in multilayered anisotropic composites</title><author>Glushkov, Ye.V. ; Glushkova, N.V. ; Krivonos, A.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-98ddd0ba91cb05980f95f83e9a41dfab27411de8cde209adf86149fc9b78ee4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Anisotropy</topic><topic>Asymptotic properties</topic><topic>Channels</topic><topic>Dynamics</topic><topic>Elastic waves</topic><topic>Exact sciences and technology</topic><topic>Excitation</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Loads (forces)</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Structural and continuum mechanics</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Glushkov, Ye.V.</creatorcontrib><creatorcontrib>Glushkova, N.V.</creatorcontrib><creatorcontrib>Krivonos, A.S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of applied mathematics and mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Glushkov, Ye.V.</au><au>Glushkova, N.V.</au><au>Krivonos, A.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The excitation and propagation of elastic waves in multilayered anisotropic composites</atitle><jtitle>Journal of applied mathematics and mechanics</jtitle><date>2010</date><risdate>2010</risdate><volume>74</volume><issue>3</issue><spage>297</spage><epage>305</epage><pages>297-305</pages><issn>0021-8928</issn><eissn>0021-8928</eissn><abstract>Using an integral approach wave fields, excited by dynamic action on composite materials with an arbitrary anisotropy of the elastic properties of their layers, are expressed in the form of the convolution of a Green's matrix with the stress vector of the specified load. The construction of a Fourier symbol of Green's matrix and the location of their poles and residues in them, which gives the asymptotic form of the surface and channel waves, plays a key role in determining the dynamic reaction of the material and in analysing the wave fields. Unlike the representations of classical modal analysis, the latter takes into account not only the characteristics of the material but also of the source. A brief description of the general scheme of wave analysis is given and test numerical examples are presented, as well as examples of the effect of the material structure on the energy characteristics and directivity of the radiation of waves excited in them by surface piezoactuators.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jappmathmech.2010.07.005</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8928 |
ispartof | Journal of applied mathematics and mechanics, 2010, Vol.74 (3), p.297-305 |
issn | 0021-8928 0021-8928 |
language | eng |
recordid | cdi_proquest_miscellaneous_849457740 |
source | ScienceDirect Journals |
subjects | Anisotropy Asymptotic properties Channels Dynamics Elastic waves Exact sciences and technology Excitation Fundamental areas of phenomenology (including applications) Loads (forces) Physics Solid mechanics Static elasticity (thermoelasticity...) Structural and continuum mechanics Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) Wave propagation |
title | The excitation and propagation of elastic waves in multilayered anisotropic composites |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T21%3A39%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20excitation%20and%20propagation%20of%20elastic%20waves%20in%20multilayered%20anisotropic%20composites&rft.jtitle=Journal%20of%20applied%20mathematics%20and%20mechanics&rft.au=Glushkov,%20Ye.V.&rft.date=2010&rft.volume=74&rft.issue=3&rft.spage=297&rft.epage=305&rft.pages=297-305&rft.issn=0021-8928&rft.eissn=0021-8928&rft_id=info:doi/10.1016/j.jappmathmech.2010.07.005&rft_dat=%3Cproquest_cross%3E849457740%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c386t-98ddd0ba91cb05980f95f83e9a41dfab27411de8cde209adf86149fc9b78ee4f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=849457740&rft_id=info:pmid/&rfr_iscdi=true |