Loading…

The excitation and propagation of elastic waves in multilayered anisotropic composites

Using an integral approach wave fields, excited by dynamic action on composite materials with an arbitrary anisotropy of the elastic properties of their layers, are expressed in the form of the convolution of a Green's matrix with the stress vector of the specified load. The construction of a F...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied mathematics and mechanics 2010, Vol.74 (3), p.297-305
Main Authors: Glushkov, Ye.V., Glushkova, N.V., Krivonos, A.S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c386t-98ddd0ba91cb05980f95f83e9a41dfab27411de8cde209adf86149fc9b78ee4f3
cites cdi_FETCH-LOGICAL-c386t-98ddd0ba91cb05980f95f83e9a41dfab27411de8cde209adf86149fc9b78ee4f3
container_end_page 305
container_issue 3
container_start_page 297
container_title Journal of applied mathematics and mechanics
container_volume 74
creator Glushkov, Ye.V.
Glushkova, N.V.
Krivonos, A.S.
description Using an integral approach wave fields, excited by dynamic action on composite materials with an arbitrary anisotropy of the elastic properties of their layers, are expressed in the form of the convolution of a Green's matrix with the stress vector of the specified load. The construction of a Fourier symbol of Green's matrix and the location of their poles and residues in them, which gives the asymptotic form of the surface and channel waves, plays a key role in determining the dynamic reaction of the material and in analysing the wave fields. Unlike the representations of classical modal analysis, the latter takes into account not only the characteristics of the material but also of the source. A brief description of the general scheme of wave analysis is given and test numerical examples are presented, as well as examples of the effect of the material structure on the energy characteristics and directivity of the radiation of waves excited in them by surface piezoactuators.
doi_str_mv 10.1016/j.jappmathmech.2010.07.005
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_849457740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021892810000869</els_id><sourcerecordid>849457740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-98ddd0ba91cb05980f95f83e9a41dfab27411de8cde209adf86149fc9b78ee4f3</originalsourceid><addsrcrecordid>eNqNUEtPwzAMrhBIjMd_qJAQpw2n7daEGxpPCYnL4Bp5icMytU1JMmD_nkyb0I6cbMvfw_6y7ILBiAGbXC9HS-z7FuOiJbUYFZAWUI8AxgfZAKBgQy4KfrjXH2cnISwBWA0TPsjeZwvK6UfZiNG6LsdO5713PX5sZ2dyajBEq_Jv_KKQ2y5vV020Da7Jk04EG1xMjIRQru1dsJHCWXZksAl0vqun2dvD_Wz6NHx5fXye3r4MVckncSi41hrmKJiaw1hwMGJseEkCK6YNzou6YkwTV5oKEKgNn7BKGCXmNSeqTHmaXW11082fKwpRtjYoahrsyK2C5JWoxnVdQULebJHKuxA8Gdl726JfSwZyk6Vcyv0s5SZLCbVMWSby5c4Gg8LGeOyUDX8KRVmUooKNyd0WR-nnL0teBmWpU6StJxWldvY_dr8EjJPS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>849457740</pqid></control><display><type>article</type><title>The excitation and propagation of elastic waves in multilayered anisotropic composites</title><source>ScienceDirect Journals</source><creator>Glushkov, Ye.V. ; Glushkova, N.V. ; Krivonos, A.S.</creator><creatorcontrib>Glushkov, Ye.V. ; Glushkova, N.V. ; Krivonos, A.S.</creatorcontrib><description>Using an integral approach wave fields, excited by dynamic action on composite materials with an arbitrary anisotropy of the elastic properties of their layers, are expressed in the form of the convolution of a Green's matrix with the stress vector of the specified load. The construction of a Fourier symbol of Green's matrix and the location of their poles and residues in them, which gives the asymptotic form of the surface and channel waves, plays a key role in determining the dynamic reaction of the material and in analysing the wave fields. Unlike the representations of classical modal analysis, the latter takes into account not only the characteristics of the material but also of the source. A brief description of the general scheme of wave analysis is given and test numerical examples are presented, as well as examples of the effect of the material structure on the energy characteristics and directivity of the radiation of waves excited in them by surface piezoactuators.</description><identifier>ISSN: 0021-8928</identifier><identifier>EISSN: 0021-8928</identifier><identifier>DOI: 10.1016/j.jappmathmech.2010.07.005</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Anisotropy ; Asymptotic properties ; Channels ; Dynamics ; Elastic waves ; Exact sciences and technology ; Excitation ; Fundamental areas of phenomenology (including applications) ; Loads (forces) ; Physics ; Solid mechanics ; Static elasticity (thermoelasticity...) ; Structural and continuum mechanics ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) ; Wave propagation</subject><ispartof>Journal of applied mathematics and mechanics, 2010, Vol.74 (3), p.297-305</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-98ddd0ba91cb05980f95f83e9a41dfab27411de8cde209adf86149fc9b78ee4f3</citedby><cites>FETCH-LOGICAL-c386t-98ddd0ba91cb05980f95f83e9a41dfab27411de8cde209adf86149fc9b78ee4f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4009,27902,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23239400$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Glushkov, Ye.V.</creatorcontrib><creatorcontrib>Glushkova, N.V.</creatorcontrib><creatorcontrib>Krivonos, A.S.</creatorcontrib><title>The excitation and propagation of elastic waves in multilayered anisotropic composites</title><title>Journal of applied mathematics and mechanics</title><description>Using an integral approach wave fields, excited by dynamic action on composite materials with an arbitrary anisotropy of the elastic properties of their layers, are expressed in the form of the convolution of a Green's matrix with the stress vector of the specified load. The construction of a Fourier symbol of Green's matrix and the location of their poles and residues in them, which gives the asymptotic form of the surface and channel waves, plays a key role in determining the dynamic reaction of the material and in analysing the wave fields. Unlike the representations of classical modal analysis, the latter takes into account not only the characteristics of the material but also of the source. A brief description of the general scheme of wave analysis is given and test numerical examples are presented, as well as examples of the effect of the material structure on the energy characteristics and directivity of the radiation of waves excited in them by surface piezoactuators.</description><subject>Anisotropy</subject><subject>Asymptotic properties</subject><subject>Channels</subject><subject>Dynamics</subject><subject>Elastic waves</subject><subject>Exact sciences and technology</subject><subject>Excitation</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Loads (forces)</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Structural and continuum mechanics</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><subject>Wave propagation</subject><issn>0021-8928</issn><issn>0021-8928</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNUEtPwzAMrhBIjMd_qJAQpw2n7daEGxpPCYnL4Bp5icMytU1JMmD_nkyb0I6cbMvfw_6y7ILBiAGbXC9HS-z7FuOiJbUYFZAWUI8AxgfZAKBgQy4KfrjXH2cnISwBWA0TPsjeZwvK6UfZiNG6LsdO5713PX5sZ2dyajBEq_Jv_KKQ2y5vV020Da7Jk04EG1xMjIRQru1dsJHCWXZksAl0vqun2dvD_Wz6NHx5fXye3r4MVckncSi41hrmKJiaw1hwMGJseEkCK6YNzou6YkwTV5oKEKgNn7BKGCXmNSeqTHmaXW11082fKwpRtjYoahrsyK2C5JWoxnVdQULebJHKuxA8Gdl726JfSwZyk6Vcyv0s5SZLCbVMWSby5c4Gg8LGeOyUDX8KRVmUooKNyd0WR-nnL0teBmWpU6StJxWldvY_dr8EjJPS</recordid><startdate>2010</startdate><enddate>2010</enddate><creator>Glushkov, Ye.V.</creator><creator>Glushkova, N.V.</creator><creator>Krivonos, A.S.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>2010</creationdate><title>The excitation and propagation of elastic waves in multilayered anisotropic composites</title><author>Glushkov, Ye.V. ; Glushkova, N.V. ; Krivonos, A.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-98ddd0ba91cb05980f95f83e9a41dfab27411de8cde209adf86149fc9b78ee4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Anisotropy</topic><topic>Asymptotic properties</topic><topic>Channels</topic><topic>Dynamics</topic><topic>Elastic waves</topic><topic>Exact sciences and technology</topic><topic>Excitation</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Loads (forces)</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Structural and continuum mechanics</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Glushkov, Ye.V.</creatorcontrib><creatorcontrib>Glushkova, N.V.</creatorcontrib><creatorcontrib>Krivonos, A.S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of applied mathematics and mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Glushkov, Ye.V.</au><au>Glushkova, N.V.</au><au>Krivonos, A.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The excitation and propagation of elastic waves in multilayered anisotropic composites</atitle><jtitle>Journal of applied mathematics and mechanics</jtitle><date>2010</date><risdate>2010</risdate><volume>74</volume><issue>3</issue><spage>297</spage><epage>305</epage><pages>297-305</pages><issn>0021-8928</issn><eissn>0021-8928</eissn><abstract>Using an integral approach wave fields, excited by dynamic action on composite materials with an arbitrary anisotropy of the elastic properties of their layers, are expressed in the form of the convolution of a Green's matrix with the stress vector of the specified load. The construction of a Fourier symbol of Green's matrix and the location of their poles and residues in them, which gives the asymptotic form of the surface and channel waves, plays a key role in determining the dynamic reaction of the material and in analysing the wave fields. Unlike the representations of classical modal analysis, the latter takes into account not only the characteristics of the material but also of the source. A brief description of the general scheme of wave analysis is given and test numerical examples are presented, as well as examples of the effect of the material structure on the energy characteristics and directivity of the radiation of waves excited in them by surface piezoactuators.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jappmathmech.2010.07.005</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8928
ispartof Journal of applied mathematics and mechanics, 2010, Vol.74 (3), p.297-305
issn 0021-8928
0021-8928
language eng
recordid cdi_proquest_miscellaneous_849457740
source ScienceDirect Journals
subjects Anisotropy
Asymptotic properties
Channels
Dynamics
Elastic waves
Exact sciences and technology
Excitation
Fundamental areas of phenomenology (including applications)
Loads (forces)
Physics
Solid mechanics
Static elasticity (thermoelasticity...)
Structural and continuum mechanics
Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)
Wave propagation
title The excitation and propagation of elastic waves in multilayered anisotropic composites
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T21%3A39%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20excitation%20and%20propagation%20of%20elastic%20waves%20in%20multilayered%20anisotropic%20composites&rft.jtitle=Journal%20of%20applied%20mathematics%20and%20mechanics&rft.au=Glushkov,%20Ye.V.&rft.date=2010&rft.volume=74&rft.issue=3&rft.spage=297&rft.epage=305&rft.pages=297-305&rft.issn=0021-8928&rft.eissn=0021-8928&rft_id=info:doi/10.1016/j.jappmathmech.2010.07.005&rft_dat=%3Cproquest_cross%3E849457740%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c386t-98ddd0ba91cb05980f95f83e9a41dfab27411de8cde209adf86149fc9b78ee4f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=849457740&rft_id=info:pmid/&rfr_iscdi=true