Loading…

Efficient computation of DFT commuting matrices by a closed-form infinite order approximation to the second differentiation matrix

In order to define the discrete fractional Fourier transform, Hermite Gauss-like eigenvectors are needed and one way of extracting these eigenvectors is to employ DFT commuting matrices. Recently, Pei et al. exploited the idea of obtaining higher order DFT-commuting matrices, which was introduced by...

Full description

Saved in:
Bibliographic Details
Published in:Signal processing 2011-03, Vol.91 (3), p.582-589
Main Authors: Serbes, Ahmet, Durak-Ata, Lutfiye
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c253t-5cb8344888c982dcb38f418f4b0c22030b4b31427fc99cdb4c20bc3cfbd8b6913
cites cdi_FETCH-LOGICAL-c253t-5cb8344888c982dcb38f418f4b0c22030b4b31427fc99cdb4c20bc3cfbd8b6913
container_end_page 589
container_issue 3
container_start_page 582
container_title Signal processing
container_volume 91
creator Serbes, Ahmet
Durak-Ata, Lutfiye
description In order to define the discrete fractional Fourier transform, Hermite Gauss-like eigenvectors are needed and one way of extracting these eigenvectors is to employ DFT commuting matrices. Recently, Pei et al. exploited the idea of obtaining higher order DFT-commuting matrices, which was introduced by Candan previously. The upper bound of O( h 2 k ) approximation to N× N commuting matrix is 2 k + 1 ≤ N in Candan's work and Pei et al. improved the proximity by removing this upper bound at the expense of higher computational cost. In this paper, we derive an exact closed form expression of infinite- order Taylor series approximation to discrete second derivative operator and employ it in the definition of excellent DFT commuting matrices. We show that in the limit this Taylor series expansion converges to a trigonometric function of second-order differentiating matrix. The commuting matrices possess eigenvectors that are closer to the samples of Hermite–Gaussian eigenfunctions of DFT better than any other methods in the literature with no additional computational cost.
doi_str_mv 10.1016/j.sigpro.2010.05.002
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_849458968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165168410001908</els_id><sourcerecordid>849458968</sourcerecordid><originalsourceid>FETCH-LOGICAL-c253t-5cb8344888c982dcb38f418f4b0c22030b4b31427fc99cdb4c20bc3cfbd8b6913</originalsourceid><addsrcrecordid>eNp9kD1PxDAMhiMEEsfHP2DIxtQjSdNeuiAhvqWTWGCOGseBnK7NkeQQrPxycpSZwbJkv35tP4SccTbnjLcXq3nyr5sY5oKVEmvmjIk9MuNqIapF0yz2yazImoq3Sh6So5RWjDFet2xGvm-d8-BxzBTCsNnmPvsw0uDozd3zrjRssx9f6dDn6AETNV-0p7AOCW3lQhyoH50ffUYaosVI-0055NMPk08ONL8hTQhhtNR65zCWXX7q_pp-npAD168Tnv7lY_Jyd_t8_VAtn-4fr6-WFYimzlUDRtVSKqWgU8KCqZWTvIRhIASrmZGm5lIsHHQdWCNBMAM1OGOVaTteH5Pzybcc-L7FlPXgE-B63Y8Ytkkr2clGda0qSjkpIYaUIjq9ieWj-KU50zvieqUn4npHXLNGF-Jl7HIaw_LFh8eo044soPURIWsb_P8GPxzQjzU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>849458968</pqid></control><display><type>article</type><title>Efficient computation of DFT commuting matrices by a closed-form infinite order approximation to the second differentiation matrix</title><source>ScienceDirect Freedom Collection</source><creator>Serbes, Ahmet ; Durak-Ata, Lutfiye</creator><creatorcontrib>Serbes, Ahmet ; Durak-Ata, Lutfiye</creatorcontrib><description>In order to define the discrete fractional Fourier transform, Hermite Gauss-like eigenvectors are needed and one way of extracting these eigenvectors is to employ DFT commuting matrices. Recently, Pei et al. exploited the idea of obtaining higher order DFT-commuting matrices, which was introduced by Candan previously. The upper bound of O( h 2 k ) approximation to N× N commuting matrix is 2 k + 1 ≤ N in Candan's work and Pei et al. improved the proximity by removing this upper bound at the expense of higher computational cost. In this paper, we derive an exact closed form expression of infinite- order Taylor series approximation to discrete second derivative operator and employ it in the definition of excellent DFT commuting matrices. We show that in the limit this Taylor series expansion converges to a trigonometric function of second-order differentiating matrix. The commuting matrices possess eigenvectors that are closer to the samples of Hermite–Gaussian eigenfunctions of DFT better than any other methods in the literature with no additional computational cost.</description><identifier>ISSN: 0165-1684</identifier><identifier>EISSN: 1872-7557</identifier><identifier>DOI: 10.1016/j.sigpro.2010.05.002</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Approximation ; Commuting matrices ; Computational efficiency ; DFT commuting matrices ; DFT matrix ; Discrete fractional Fourier transform ; Eigenvectors ; Exact solutions ; Hermite–Gauss functions ; Mathematical analysis ; Matrices ; Matrix methods ; Taylor series</subject><ispartof>Signal processing, 2011-03, Vol.91 (3), p.582-589</ispartof><rights>2010 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c253t-5cb8344888c982dcb38f418f4b0c22030b4b31427fc99cdb4c20bc3cfbd8b6913</citedby><cites>FETCH-LOGICAL-c253t-5cb8344888c982dcb38f418f4b0c22030b4b31427fc99cdb4c20bc3cfbd8b6913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Serbes, Ahmet</creatorcontrib><creatorcontrib>Durak-Ata, Lutfiye</creatorcontrib><title>Efficient computation of DFT commuting matrices by a closed-form infinite order approximation to the second differentiation matrix</title><title>Signal processing</title><description>In order to define the discrete fractional Fourier transform, Hermite Gauss-like eigenvectors are needed and one way of extracting these eigenvectors is to employ DFT commuting matrices. Recently, Pei et al. exploited the idea of obtaining higher order DFT-commuting matrices, which was introduced by Candan previously. The upper bound of O( h 2 k ) approximation to N× N commuting matrix is 2 k + 1 ≤ N in Candan's work and Pei et al. improved the proximity by removing this upper bound at the expense of higher computational cost. In this paper, we derive an exact closed form expression of infinite- order Taylor series approximation to discrete second derivative operator and employ it in the definition of excellent DFT commuting matrices. We show that in the limit this Taylor series expansion converges to a trigonometric function of second-order differentiating matrix. The commuting matrices possess eigenvectors that are closer to the samples of Hermite–Gaussian eigenfunctions of DFT better than any other methods in the literature with no additional computational cost.</description><subject>Approximation</subject><subject>Commuting matrices</subject><subject>Computational efficiency</subject><subject>DFT commuting matrices</subject><subject>DFT matrix</subject><subject>Discrete fractional Fourier transform</subject><subject>Eigenvectors</subject><subject>Exact solutions</subject><subject>Hermite–Gauss functions</subject><subject>Mathematical analysis</subject><subject>Matrices</subject><subject>Matrix methods</subject><subject>Taylor series</subject><issn>0165-1684</issn><issn>1872-7557</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PxDAMhiMEEsfHP2DIxtQjSdNeuiAhvqWTWGCOGseBnK7NkeQQrPxycpSZwbJkv35tP4SccTbnjLcXq3nyr5sY5oKVEmvmjIk9MuNqIapF0yz2yazImoq3Sh6So5RWjDFet2xGvm-d8-BxzBTCsNnmPvsw0uDozd3zrjRssx9f6dDn6AETNV-0p7AOCW3lQhyoH50ffUYaosVI-0055NMPk08ONL8hTQhhtNR65zCWXX7q_pp-npAD168Tnv7lY_Jyd_t8_VAtn-4fr6-WFYimzlUDRtVSKqWgU8KCqZWTvIRhIASrmZGm5lIsHHQdWCNBMAM1OGOVaTteH5Pzybcc-L7FlPXgE-B63Y8Ytkkr2clGda0qSjkpIYaUIjq9ieWj-KU50zvieqUn4npHXLNGF-Jl7HIaw_LFh8eo044soPURIWsb_P8GPxzQjzU</recordid><startdate>201103</startdate><enddate>201103</enddate><creator>Serbes, Ahmet</creator><creator>Durak-Ata, Lutfiye</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201103</creationdate><title>Efficient computation of DFT commuting matrices by a closed-form infinite order approximation to the second differentiation matrix</title><author>Serbes, Ahmet ; Durak-Ata, Lutfiye</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c253t-5cb8344888c982dcb38f418f4b0c22030b4b31427fc99cdb4c20bc3cfbd8b6913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Approximation</topic><topic>Commuting matrices</topic><topic>Computational efficiency</topic><topic>DFT commuting matrices</topic><topic>DFT matrix</topic><topic>Discrete fractional Fourier transform</topic><topic>Eigenvectors</topic><topic>Exact solutions</topic><topic>Hermite–Gauss functions</topic><topic>Mathematical analysis</topic><topic>Matrices</topic><topic>Matrix methods</topic><topic>Taylor series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Serbes, Ahmet</creatorcontrib><creatorcontrib>Durak-Ata, Lutfiye</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Serbes, Ahmet</au><au>Durak-Ata, Lutfiye</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient computation of DFT commuting matrices by a closed-form infinite order approximation to the second differentiation matrix</atitle><jtitle>Signal processing</jtitle><date>2011-03</date><risdate>2011</risdate><volume>91</volume><issue>3</issue><spage>582</spage><epage>589</epage><pages>582-589</pages><issn>0165-1684</issn><eissn>1872-7557</eissn><abstract>In order to define the discrete fractional Fourier transform, Hermite Gauss-like eigenvectors are needed and one way of extracting these eigenvectors is to employ DFT commuting matrices. Recently, Pei et al. exploited the idea of obtaining higher order DFT-commuting matrices, which was introduced by Candan previously. The upper bound of O( h 2 k ) approximation to N× N commuting matrix is 2 k + 1 ≤ N in Candan's work and Pei et al. improved the proximity by removing this upper bound at the expense of higher computational cost. In this paper, we derive an exact closed form expression of infinite- order Taylor series approximation to discrete second derivative operator and employ it in the definition of excellent DFT commuting matrices. We show that in the limit this Taylor series expansion converges to a trigonometric function of second-order differentiating matrix. The commuting matrices possess eigenvectors that are closer to the samples of Hermite–Gaussian eigenfunctions of DFT better than any other methods in the literature with no additional computational cost.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.sigpro.2010.05.002</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0165-1684
ispartof Signal processing, 2011-03, Vol.91 (3), p.582-589
issn 0165-1684
1872-7557
language eng
recordid cdi_proquest_miscellaneous_849458968
source ScienceDirect Freedom Collection
subjects Approximation
Commuting matrices
Computational efficiency
DFT commuting matrices
DFT matrix
Discrete fractional Fourier transform
Eigenvectors
Exact solutions
Hermite–Gauss functions
Mathematical analysis
Matrices
Matrix methods
Taylor series
title Efficient computation of DFT commuting matrices by a closed-form infinite order approximation to the second differentiation matrix
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A55%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20computation%20of%20DFT%20commuting%20matrices%20by%20a%20closed-form%20infinite%20order%20approximation%20to%20the%20second%20differentiation%20matrix&rft.jtitle=Signal%20processing&rft.au=Serbes,%20Ahmet&rft.date=2011-03&rft.volume=91&rft.issue=3&rft.spage=582&rft.epage=589&rft.pages=582-589&rft.issn=0165-1684&rft.eissn=1872-7557&rft_id=info:doi/10.1016/j.sigpro.2010.05.002&rft_dat=%3Cproquest_cross%3E849458968%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c253t-5cb8344888c982dcb38f418f4b0c22030b4b31427fc99cdb4c20bc3cfbd8b6913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=849458968&rft_id=info:pmid/&rfr_iscdi=true