Loading…

Bioreactor based engineering of large-scale human cartilage grafts for joint resurfacing

Abstract Apart from partial or total joint replacement, no surgical procedure is currently available to treat large and deep cartilage defects associated with advanced diseases such as osteoarthritis. In this work, we developed a perfusion bioreactor system to engineer human cartilage grafts in a si...

Full description

Saved in:
Bibliographic Details
Published in:Biomaterials 2010-12, Vol.31 (34), p.8946-8952
Main Authors: Santoro, Rosaria, Olivares, Andy L, Brans, Gerben, Wirz, Dieter, Longinotti, Cristina, Lacroix, Damien, Martin, Ivan, Wendt, David
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c518t-f4e94e054db2c084a5fbbe1467d48d570b0298d5d817c9ee0c2a0baffa8615bd3
cites cdi_FETCH-LOGICAL-c518t-f4e94e054db2c084a5fbbe1467d48d570b0298d5d817c9ee0c2a0baffa8615bd3
container_end_page 8952
container_issue 34
container_start_page 8946
container_title Biomaterials
container_volume 31
creator Santoro, Rosaria
Olivares, Andy L
Brans, Gerben
Wirz, Dieter
Longinotti, Cristina
Lacroix, Damien
Martin, Ivan
Wendt, David
description Abstract Apart from partial or total joint replacement, no surgical procedure is currently available to treat large and deep cartilage defects associated with advanced diseases such as osteoarthritis. In this work, we developed a perfusion bioreactor system to engineer human cartilage grafts in a size with clinical relevance for unicompartmental resurfacing of human knee joints (50 mm diameter × 3 mm thick). Computational fluid dynamics models were developed to optimize the flow profile when designing the perfusion chamber. Using the developed system, human chondrocytes could be seeded throughout large 50 mm diameter scaffolds with a uniform distribution. Following two weeks culture, tissues grown in the bioreactor were viable and homogeneously cartilaginous, with biomechanical properties approaching those of native cartilage. In contrast, tissues generated by conventional manual production procedures were highly inhomogeneous and contained large necrotic regions. The unprecedented engineering of human cartilage tissues in this large-scale opens the practical perspective of grafting functional biological substitutes for the clinical treatment for extensive cartilage defects, possibly in combination with surgical or pharmacological therapies to support durability of the implant. Ongoing efforts are aimed at integrating the up-scaled bioreactor based processes within a fully automated and closed manufacturing system for safe, standardized, and GMP compliant production of large-scale cartilage grafts.
doi_str_mv 10.1016/j.biomaterials.2010.08.009
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_849464256</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S014296121001015X</els_id><sourcerecordid>756661645</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-f4e94e054db2c084a5fbbe1467d48d570b0298d5d817c9ee0c2a0baffa8615bd3</originalsourceid><addsrcrecordid>eNqNUsFu1TAQtBAVfS38Aoq4cMpj7dqOwwEJCoVKlXoApN4s21kHhyQudoLUv8fRKwhxoaf1yjOzq50h5AWFPQUqXw17G-JkFkzBjHnPoHyA2gO0j8iOqkbVogXxmOyAcla3krJjcpLzAKUHzp6QYwYKgCnYkZt3ISY0bompsiZjV-HchxmL9txX0VejST3W2ZkRq2_rZObKmbSE0fRY9cn4JVe-cIcY5qVKmNfkjSvcp-TIl-3w2X09JV8vPnw5_1RfXX-8PH97VTtB1VJ7ji1HELyzzIHiRnhrkXLZdFx1ogELrC2PTtHGtYjgmAFrvDdKUmG7s1Py8qB7m-KPFfOip5AdjqOZMa5ZK95yyZmQ_0U2QkpJJRcF-fqAdCnmnNDr2xQmk-40Bb1ZoAf9twV6s0CD0sWCQn5-P2a1E3Z_qL9vXgDvDwAsZ_kZMOnsAs4Ou5DQLbqL4WFz3vwj48Ywh2LUd7zDPMQ1zRuH6sw06M9bGLYs0BIDoOLm7BfzkrTD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>756661645</pqid></control><display><type>article</type><title>Bioreactor based engineering of large-scale human cartilage grafts for joint resurfacing</title><source>ScienceDirect Journals</source><creator>Santoro, Rosaria ; Olivares, Andy L ; Brans, Gerben ; Wirz, Dieter ; Longinotti, Cristina ; Lacroix, Damien ; Martin, Ivan ; Wendt, David</creator><creatorcontrib>Santoro, Rosaria ; Olivares, Andy L ; Brans, Gerben ; Wirz, Dieter ; Longinotti, Cristina ; Lacroix, Damien ; Martin, Ivan ; Wendt, David</creatorcontrib><description>Abstract Apart from partial or total joint replacement, no surgical procedure is currently available to treat large and deep cartilage defects associated with advanced diseases such as osteoarthritis. In this work, we developed a perfusion bioreactor system to engineer human cartilage grafts in a size with clinical relevance for unicompartmental resurfacing of human knee joints (50 mm diameter × 3 mm thick). Computational fluid dynamics models were developed to optimize the flow profile when designing the perfusion chamber. Using the developed system, human chondrocytes could be seeded throughout large 50 mm diameter scaffolds with a uniform distribution. Following two weeks culture, tissues grown in the bioreactor were viable and homogeneously cartilaginous, with biomechanical properties approaching those of native cartilage. In contrast, tissues generated by conventional manual production procedures were highly inhomogeneous and contained large necrotic regions. The unprecedented engineering of human cartilage tissues in this large-scale opens the practical perspective of grafting functional biological substitutes for the clinical treatment for extensive cartilage defects, possibly in combination with surgical or pharmacological therapies to support durability of the implant. Ongoing efforts are aimed at integrating the up-scaled bioreactor based processes within a fully automated and closed manufacturing system for safe, standardized, and GMP compliant production of large-scale cartilage grafts.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2010.08.009</identifier><identifier>PMID: 20800280</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Advanced Basic Science ; Arthroplasty - methods ; Biomechanical Phenomena ; Bioreactor ; Bioreactors ; Cartilage - transplantation ; Cartilage repair ; Computational fluid dynamics ; Computer Simulation ; Dentistry ; Glycosaminoglycans - metabolism ; Humans ; Joints - surgery ; Perfusion ; Regenerative medicine ; Rheology ; Scale-up ; Tissue engineering ; Tissue Engineering - instrumentation</subject><ispartof>Biomaterials, 2010-12, Vol.31 (34), p.8946-8952</ispartof><rights>Elsevier Ltd</rights><rights>2010 Elsevier Ltd</rights><rights>Copyright © 2010 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-f4e94e054db2c084a5fbbe1467d48d570b0298d5d817c9ee0c2a0baffa8615bd3</citedby><cites>FETCH-LOGICAL-c518t-f4e94e054db2c084a5fbbe1467d48d570b0298d5d817c9ee0c2a0baffa8615bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20800280$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Santoro, Rosaria</creatorcontrib><creatorcontrib>Olivares, Andy L</creatorcontrib><creatorcontrib>Brans, Gerben</creatorcontrib><creatorcontrib>Wirz, Dieter</creatorcontrib><creatorcontrib>Longinotti, Cristina</creatorcontrib><creatorcontrib>Lacroix, Damien</creatorcontrib><creatorcontrib>Martin, Ivan</creatorcontrib><creatorcontrib>Wendt, David</creatorcontrib><title>Bioreactor based engineering of large-scale human cartilage grafts for joint resurfacing</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract Apart from partial or total joint replacement, no surgical procedure is currently available to treat large and deep cartilage defects associated with advanced diseases such as osteoarthritis. In this work, we developed a perfusion bioreactor system to engineer human cartilage grafts in a size with clinical relevance for unicompartmental resurfacing of human knee joints (50 mm diameter × 3 mm thick). Computational fluid dynamics models were developed to optimize the flow profile when designing the perfusion chamber. Using the developed system, human chondrocytes could be seeded throughout large 50 mm diameter scaffolds with a uniform distribution. Following two weeks culture, tissues grown in the bioreactor were viable and homogeneously cartilaginous, with biomechanical properties approaching those of native cartilage. In contrast, tissues generated by conventional manual production procedures were highly inhomogeneous and contained large necrotic regions. The unprecedented engineering of human cartilage tissues in this large-scale opens the practical perspective of grafting functional biological substitutes for the clinical treatment for extensive cartilage defects, possibly in combination with surgical or pharmacological therapies to support durability of the implant. Ongoing efforts are aimed at integrating the up-scaled bioreactor based processes within a fully automated and closed manufacturing system for safe, standardized, and GMP compliant production of large-scale cartilage grafts.</description><subject>Advanced Basic Science</subject><subject>Arthroplasty - methods</subject><subject>Biomechanical Phenomena</subject><subject>Bioreactor</subject><subject>Bioreactors</subject><subject>Cartilage - transplantation</subject><subject>Cartilage repair</subject><subject>Computational fluid dynamics</subject><subject>Computer Simulation</subject><subject>Dentistry</subject><subject>Glycosaminoglycans - metabolism</subject><subject>Humans</subject><subject>Joints - surgery</subject><subject>Perfusion</subject><subject>Regenerative medicine</subject><subject>Rheology</subject><subject>Scale-up</subject><subject>Tissue engineering</subject><subject>Tissue Engineering - instrumentation</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNUsFu1TAQtBAVfS38Aoq4cMpj7dqOwwEJCoVKlXoApN4s21kHhyQudoLUv8fRKwhxoaf1yjOzq50h5AWFPQUqXw17G-JkFkzBjHnPoHyA2gO0j8iOqkbVogXxmOyAcla3krJjcpLzAKUHzp6QYwYKgCnYkZt3ISY0bompsiZjV-HchxmL9txX0VejST3W2ZkRq2_rZObKmbSE0fRY9cn4JVe-cIcY5qVKmNfkjSvcp-TIl-3w2X09JV8vPnw5_1RfXX-8PH97VTtB1VJ7ji1HELyzzIHiRnhrkXLZdFx1ogELrC2PTtHGtYjgmAFrvDdKUmG7s1Py8qB7m-KPFfOip5AdjqOZMa5ZK95yyZmQ_0U2QkpJJRcF-fqAdCnmnNDr2xQmk-40Bb1ZoAf9twV6s0CD0sWCQn5-P2a1E3Z_qL9vXgDvDwAsZ_kZMOnsAs4Ou5DQLbqL4WFz3vwj48Ywh2LUd7zDPMQ1zRuH6sw06M9bGLYs0BIDoOLm7BfzkrTD</recordid><startdate>20101201</startdate><enddate>20101201</enddate><creator>Santoro, Rosaria</creator><creator>Olivares, Andy L</creator><creator>Brans, Gerben</creator><creator>Wirz, Dieter</creator><creator>Longinotti, Cristina</creator><creator>Lacroix, Damien</creator><creator>Martin, Ivan</creator><creator>Wendt, David</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>7QP</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20101201</creationdate><title>Bioreactor based engineering of large-scale human cartilage grafts for joint resurfacing</title><author>Santoro, Rosaria ; Olivares, Andy L ; Brans, Gerben ; Wirz, Dieter ; Longinotti, Cristina ; Lacroix, Damien ; Martin, Ivan ; Wendt, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-f4e94e054db2c084a5fbbe1467d48d570b0298d5d817c9ee0c2a0baffa8615bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Advanced Basic Science</topic><topic>Arthroplasty - methods</topic><topic>Biomechanical Phenomena</topic><topic>Bioreactor</topic><topic>Bioreactors</topic><topic>Cartilage - transplantation</topic><topic>Cartilage repair</topic><topic>Computational fluid dynamics</topic><topic>Computer Simulation</topic><topic>Dentistry</topic><topic>Glycosaminoglycans - metabolism</topic><topic>Humans</topic><topic>Joints - surgery</topic><topic>Perfusion</topic><topic>Regenerative medicine</topic><topic>Rheology</topic><topic>Scale-up</topic><topic>Tissue engineering</topic><topic>Tissue Engineering - instrumentation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santoro, Rosaria</creatorcontrib><creatorcontrib>Olivares, Andy L</creatorcontrib><creatorcontrib>Brans, Gerben</creatorcontrib><creatorcontrib>Wirz, Dieter</creatorcontrib><creatorcontrib>Longinotti, Cristina</creatorcontrib><creatorcontrib>Lacroix, Damien</creatorcontrib><creatorcontrib>Martin, Ivan</creatorcontrib><creatorcontrib>Wendt, David</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santoro, Rosaria</au><au>Olivares, Andy L</au><au>Brans, Gerben</au><au>Wirz, Dieter</au><au>Longinotti, Cristina</au><au>Lacroix, Damien</au><au>Martin, Ivan</au><au>Wendt, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bioreactor based engineering of large-scale human cartilage grafts for joint resurfacing</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2010-12-01</date><risdate>2010</risdate><volume>31</volume><issue>34</issue><spage>8946</spage><epage>8952</epage><pages>8946-8952</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract Apart from partial or total joint replacement, no surgical procedure is currently available to treat large and deep cartilage defects associated with advanced diseases such as osteoarthritis. In this work, we developed a perfusion bioreactor system to engineer human cartilage grafts in a size with clinical relevance for unicompartmental resurfacing of human knee joints (50 mm diameter × 3 mm thick). Computational fluid dynamics models were developed to optimize the flow profile when designing the perfusion chamber. Using the developed system, human chondrocytes could be seeded throughout large 50 mm diameter scaffolds with a uniform distribution. Following two weeks culture, tissues grown in the bioreactor were viable and homogeneously cartilaginous, with biomechanical properties approaching those of native cartilage. In contrast, tissues generated by conventional manual production procedures were highly inhomogeneous and contained large necrotic regions. The unprecedented engineering of human cartilage tissues in this large-scale opens the practical perspective of grafting functional biological substitutes for the clinical treatment for extensive cartilage defects, possibly in combination with surgical or pharmacological therapies to support durability of the implant. Ongoing efforts are aimed at integrating the up-scaled bioreactor based processes within a fully automated and closed manufacturing system for safe, standardized, and GMP compliant production of large-scale cartilage grafts.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>20800280</pmid><doi>10.1016/j.biomaterials.2010.08.009</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2010-12, Vol.31 (34), p.8946-8952
issn 0142-9612
1878-5905
language eng
recordid cdi_proquest_miscellaneous_849464256
source ScienceDirect Journals
subjects Advanced Basic Science
Arthroplasty - methods
Biomechanical Phenomena
Bioreactor
Bioreactors
Cartilage - transplantation
Cartilage repair
Computational fluid dynamics
Computer Simulation
Dentistry
Glycosaminoglycans - metabolism
Humans
Joints - surgery
Perfusion
Regenerative medicine
Rheology
Scale-up
Tissue engineering
Tissue Engineering - instrumentation
title Bioreactor based engineering of large-scale human cartilage grafts for joint resurfacing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T13%3A00%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bioreactor%20based%20engineering%20of%20large-scale%20human%20cartilage%20grafts%20for%20joint%20resurfacing&rft.jtitle=Biomaterials&rft.au=Santoro,%20Rosaria&rft.date=2010-12-01&rft.volume=31&rft.issue=34&rft.spage=8946&rft.epage=8952&rft.pages=8946-8952&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2010.08.009&rft_dat=%3Cproquest_cross%3E756661645%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c518t-f4e94e054db2c084a5fbbe1467d48d570b0298d5d817c9ee0c2a0baffa8615bd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=756661645&rft_id=info:pmid/20800280&rfr_iscdi=true