Loading…

Combined feature evaluation for adaptive visual object tracking

► A combined feature set for object tracking. ► A novel feature evaluation approach considering temporal consistency. ► A new application of traditional tracking algorithms to model feature confidence. Existing visual tracking methods are challenged by object and background appearance variations, wh...

Full description

Saved in:
Bibliographic Details
Published in:Computer vision and image understanding 2011, Vol.115 (1), p.69-80
Main Authors: Han, Zhenjun, Ye, Qixiang, Jiao, Jianbin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c362t-e2ea67545732be262342653d2b7ce145fb95eb72e3cfdd630468cc7fb736c47f3
cites cdi_FETCH-LOGICAL-c362t-e2ea67545732be262342653d2b7ce145fb95eb72e3cfdd630468cc7fb736c47f3
container_end_page 80
container_issue 1
container_start_page 69
container_title Computer vision and image understanding
container_volume 115
creator Han, Zhenjun
Ye, Qixiang
Jiao, Jianbin
description ► A combined feature set for object tracking. ► A novel feature evaluation approach considering temporal consistency. ► A new application of traditional tracking algorithms to model feature confidence. Existing visual tracking methods are challenged by object and background appearance variations, which often occur in a long duration tracking. In this paper, we propose a combined feature evaluation approach in filter frameworks for adaptive object tracking. First, a feature set is constructed by combining color histogram (HC) and gradient orientation histogram (HOG), which gives a representation of both color and contour. Then, to adapt to the appearance changes of the object and its background, these features are assigned with different confidences adaptively to make the features with higher discriminative ability play more important roles in the instantaneous tracking. To keep the temporal consistency, the feature confidences are evaluated based on Kalman and Particle filters. Experiments and comparisons demonstrate that object tracking with evaluated features have good performance even when objects go across complex backgrounds.
doi_str_mv 10.1016/j.cviu.2010.09.004
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_849467142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1077314210001980</els_id><sourcerecordid>849467142</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-e2ea67545732be262342653d2b7ce145fb95eb72e3cfdd630468cc7fb736c47f3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU-9iKfWfDXZgiCy-AULXhS8hTSdSGq3WZO24L83ZRePnmYY3ndm3gehS4ILgom4aQszubGgOA1wVWDMj9CC4ArnlJUfx3MvZc4Ip6foLMYWY0J4RRbobu23teuhySzoYQyQwaS7UQ_O95n1IdON3g1ugmxycdRd5usWzJANQZsv13-eoxOruwgXh7pE748Pb-vnfPP69LK-3-SGCTrkQEELWfJSMloDFZRxKkrW0FoaILy0dVVCLSkwY5tGMMzFyhhpa8mE4dKyJbre790F_z1CHNTWRQNdp3vwY1QrXnEhU76kpHulCT7GAFbtgtvq8KMIVjMs1aoZlpphKVypBCuZrg7rdTS6s0H3xsU_J2Xpd0xm3e1eBynr5CCoaBz0BhoXEhbVePffmV9er3_x</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>849467142</pqid></control><display><type>article</type><title>Combined feature evaluation for adaptive visual object tracking</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Han, Zhenjun ; Ye, Qixiang ; Jiao, Jianbin</creator><creatorcontrib>Han, Zhenjun ; Ye, Qixiang ; Jiao, Jianbin</creatorcontrib><description>► A combined feature set for object tracking. ► A novel feature evaluation approach considering temporal consistency. ► A new application of traditional tracking algorithms to model feature confidence. Existing visual tracking methods are challenged by object and background appearance variations, which often occur in a long duration tracking. In this paper, we propose a combined feature evaluation approach in filter frameworks for adaptive object tracking. First, a feature set is constructed by combining color histogram (HC) and gradient orientation histogram (HOG), which gives a representation of both color and contour. Then, to adapt to the appearance changes of the object and its background, these features are assigned with different confidences adaptively to make the features with higher discriminative ability play more important roles in the instantaneous tracking. To keep the temporal consistency, the feature confidences are evaluated based on Kalman and Particle filters. Experiments and comparisons demonstrate that object tracking with evaluated features have good performance even when objects go across complex backgrounds.</description><identifier>ISSN: 1077-3142</identifier><identifier>EISSN: 1090-235X</identifier><identifier>DOI: 10.1016/j.cviu.2010.09.004</identifier><identifier>CODEN: CVIUF4</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Applied sciences ; Artificial intelligence ; C (programming language) ; Color ; Color histogram ; Computer science; control theory; systems ; Consistency ; Exact sciences and technology ; Gradient orientation histogram ; Histograms ; Kalman filter ; Object tracking ; Particle filter ; Pattern recognition. Digital image processing. Computational geometry ; Representations ; Tracking ; Visual</subject><ispartof>Computer vision and image understanding, 2011, Vol.115 (1), p.69-80</ispartof><rights>2010 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-e2ea67545732be262342653d2b7ce145fb95eb72e3cfdd630468cc7fb736c47f3</citedby><cites>FETCH-LOGICAL-c362t-e2ea67545732be262342653d2b7ce145fb95eb72e3cfdd630468cc7fb736c47f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23754014$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Zhenjun</creatorcontrib><creatorcontrib>Ye, Qixiang</creatorcontrib><creatorcontrib>Jiao, Jianbin</creatorcontrib><title>Combined feature evaluation for adaptive visual object tracking</title><title>Computer vision and image understanding</title><description>► A combined feature set for object tracking. ► A novel feature evaluation approach considering temporal consistency. ► A new application of traditional tracking algorithms to model feature confidence. Existing visual tracking methods are challenged by object and background appearance variations, which often occur in a long duration tracking. In this paper, we propose a combined feature evaluation approach in filter frameworks for adaptive object tracking. First, a feature set is constructed by combining color histogram (HC) and gradient orientation histogram (HOG), which gives a representation of both color and contour. Then, to adapt to the appearance changes of the object and its background, these features are assigned with different confidences adaptively to make the features with higher discriminative ability play more important roles in the instantaneous tracking. To keep the temporal consistency, the feature confidences are evaluated based on Kalman and Particle filters. Experiments and comparisons demonstrate that object tracking with evaluated features have good performance even when objects go across complex backgrounds.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>C (programming language)</subject><subject>Color</subject><subject>Color histogram</subject><subject>Computer science; control theory; systems</subject><subject>Consistency</subject><subject>Exact sciences and technology</subject><subject>Gradient orientation histogram</subject><subject>Histograms</subject><subject>Kalman filter</subject><subject>Object tracking</subject><subject>Particle filter</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Representations</subject><subject>Tracking</subject><subject>Visual</subject><issn>1077-3142</issn><issn>1090-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU-9iKfWfDXZgiCy-AULXhS8hTSdSGq3WZO24L83ZRePnmYY3ndm3gehS4ILgom4aQszubGgOA1wVWDMj9CC4ArnlJUfx3MvZc4Ip6foLMYWY0J4RRbobu23teuhySzoYQyQwaS7UQ_O95n1IdON3g1ugmxycdRd5usWzJANQZsv13-eoxOruwgXh7pE748Pb-vnfPP69LK-3-SGCTrkQEELWfJSMloDFZRxKkrW0FoaILy0dVVCLSkwY5tGMMzFyhhpa8mE4dKyJbre790F_z1CHNTWRQNdp3vwY1QrXnEhU76kpHulCT7GAFbtgtvq8KMIVjMs1aoZlpphKVypBCuZrg7rdTS6s0H3xsU_J2Xpd0xm3e1eBynr5CCoaBz0BhoXEhbVePffmV9er3_x</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Han, Zhenjun</creator><creator>Ye, Qixiang</creator><creator>Jiao, Jianbin</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2011</creationdate><title>Combined feature evaluation for adaptive visual object tracking</title><author>Han, Zhenjun ; Ye, Qixiang ; Jiao, Jianbin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-e2ea67545732be262342653d2b7ce145fb95eb72e3cfdd630468cc7fb736c47f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>C (programming language)</topic><topic>Color</topic><topic>Color histogram</topic><topic>Computer science; control theory; systems</topic><topic>Consistency</topic><topic>Exact sciences and technology</topic><topic>Gradient orientation histogram</topic><topic>Histograms</topic><topic>Kalman filter</topic><topic>Object tracking</topic><topic>Particle filter</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Representations</topic><topic>Tracking</topic><topic>Visual</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Zhenjun</creatorcontrib><creatorcontrib>Ye, Qixiang</creatorcontrib><creatorcontrib>Jiao, Jianbin</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer vision and image understanding</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Zhenjun</au><au>Ye, Qixiang</au><au>Jiao, Jianbin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combined feature evaluation for adaptive visual object tracking</atitle><jtitle>Computer vision and image understanding</jtitle><date>2011</date><risdate>2011</risdate><volume>115</volume><issue>1</issue><spage>69</spage><epage>80</epage><pages>69-80</pages><issn>1077-3142</issn><eissn>1090-235X</eissn><coden>CVIUF4</coden><abstract>► A combined feature set for object tracking. ► A novel feature evaluation approach considering temporal consistency. ► A new application of traditional tracking algorithms to model feature confidence. Existing visual tracking methods are challenged by object and background appearance variations, which often occur in a long duration tracking. In this paper, we propose a combined feature evaluation approach in filter frameworks for adaptive object tracking. First, a feature set is constructed by combining color histogram (HC) and gradient orientation histogram (HOG), which gives a representation of both color and contour. Then, to adapt to the appearance changes of the object and its background, these features are assigned with different confidences adaptively to make the features with higher discriminative ability play more important roles in the instantaneous tracking. To keep the temporal consistency, the feature confidences are evaluated based on Kalman and Particle filters. Experiments and comparisons demonstrate that object tracking with evaluated features have good performance even when objects go across complex backgrounds.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.cviu.2010.09.004</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1077-3142
ispartof Computer vision and image understanding, 2011, Vol.115 (1), p.69-80
issn 1077-3142
1090-235X
language eng
recordid cdi_proquest_miscellaneous_849467142
source ScienceDirect Freedom Collection 2022-2024
subjects Applied sciences
Artificial intelligence
C (programming language)
Color
Color histogram
Computer science
control theory
systems
Consistency
Exact sciences and technology
Gradient orientation histogram
Histograms
Kalman filter
Object tracking
Particle filter
Pattern recognition. Digital image processing. Computational geometry
Representations
Tracking
Visual
title Combined feature evaluation for adaptive visual object tracking
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A16%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combined%20feature%20evaluation%20for%20adaptive%20visual%20object%20tracking&rft.jtitle=Computer%20vision%20and%20image%20understanding&rft.au=Han,%20Zhenjun&rft.date=2011&rft.volume=115&rft.issue=1&rft.spage=69&rft.epage=80&rft.pages=69-80&rft.issn=1077-3142&rft.eissn=1090-235X&rft.coden=CVIUF4&rft_id=info:doi/10.1016/j.cviu.2010.09.004&rft_dat=%3Cproquest_cross%3E849467142%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c362t-e2ea67545732be262342653d2b7ce145fb95eb72e3cfdd630468cc7fb736c47f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=849467142&rft_id=info:pmid/&rfr_iscdi=true