Loading…
Combined feature evaluation for adaptive visual object tracking
► A combined feature set for object tracking. ► A novel feature evaluation approach considering temporal consistency. ► A new application of traditional tracking algorithms to model feature confidence. Existing visual tracking methods are challenged by object and background appearance variations, wh...
Saved in:
Published in: | Computer vision and image understanding 2011, Vol.115 (1), p.69-80 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c362t-e2ea67545732be262342653d2b7ce145fb95eb72e3cfdd630468cc7fb736c47f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c362t-e2ea67545732be262342653d2b7ce145fb95eb72e3cfdd630468cc7fb736c47f3 |
container_end_page | 80 |
container_issue | 1 |
container_start_page | 69 |
container_title | Computer vision and image understanding |
container_volume | 115 |
creator | Han, Zhenjun Ye, Qixiang Jiao, Jianbin |
description | ► A combined feature set for object tracking. ► A novel feature evaluation approach considering temporal consistency. ► A new application of traditional tracking algorithms to model feature confidence.
Existing visual tracking methods are challenged by object and background appearance variations, which often occur in a long duration tracking. In this paper, we propose a combined feature evaluation approach in filter frameworks for adaptive object tracking. First, a feature set is constructed by combining color histogram (HC) and gradient orientation histogram (HOG), which gives a representation of both color and contour. Then, to adapt to the appearance changes of the object and its background, these features are assigned with different confidences adaptively to make the features with higher discriminative ability play more important roles in the instantaneous tracking. To keep the temporal consistency, the feature confidences are evaluated based on Kalman and Particle filters. Experiments and comparisons demonstrate that object tracking with evaluated features have good performance even when objects go across complex backgrounds. |
doi_str_mv | 10.1016/j.cviu.2010.09.004 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_849467142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1077314210001980</els_id><sourcerecordid>849467142</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-e2ea67545732be262342653d2b7ce145fb95eb72e3cfdd630468cc7fb736c47f3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU-9iKfWfDXZgiCy-AULXhS8hTSdSGq3WZO24L83ZRePnmYY3ndm3gehS4ILgom4aQszubGgOA1wVWDMj9CC4ArnlJUfx3MvZc4Ip6foLMYWY0J4RRbobu23teuhySzoYQyQwaS7UQ_O95n1IdON3g1ugmxycdRd5usWzJANQZsv13-eoxOruwgXh7pE748Pb-vnfPP69LK-3-SGCTrkQEELWfJSMloDFZRxKkrW0FoaILy0dVVCLSkwY5tGMMzFyhhpa8mE4dKyJbre790F_z1CHNTWRQNdp3vwY1QrXnEhU76kpHulCT7GAFbtgtvq8KMIVjMs1aoZlpphKVypBCuZrg7rdTS6s0H3xsU_J2Xpd0xm3e1eBynr5CCoaBz0BhoXEhbVePffmV9er3_x</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>849467142</pqid></control><display><type>article</type><title>Combined feature evaluation for adaptive visual object tracking</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Han, Zhenjun ; Ye, Qixiang ; Jiao, Jianbin</creator><creatorcontrib>Han, Zhenjun ; Ye, Qixiang ; Jiao, Jianbin</creatorcontrib><description>► A combined feature set for object tracking. ► A novel feature evaluation approach considering temporal consistency. ► A new application of traditional tracking algorithms to model feature confidence.
Existing visual tracking methods are challenged by object and background appearance variations, which often occur in a long duration tracking. In this paper, we propose a combined feature evaluation approach in filter frameworks for adaptive object tracking. First, a feature set is constructed by combining color histogram (HC) and gradient orientation histogram (HOG), which gives a representation of both color and contour. Then, to adapt to the appearance changes of the object and its background, these features are assigned with different confidences adaptively to make the features with higher discriminative ability play more important roles in the instantaneous tracking. To keep the temporal consistency, the feature confidences are evaluated based on Kalman and Particle filters. Experiments and comparisons demonstrate that object tracking with evaluated features have good performance even when objects go across complex backgrounds.</description><identifier>ISSN: 1077-3142</identifier><identifier>EISSN: 1090-235X</identifier><identifier>DOI: 10.1016/j.cviu.2010.09.004</identifier><identifier>CODEN: CVIUF4</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Applied sciences ; Artificial intelligence ; C (programming language) ; Color ; Color histogram ; Computer science; control theory; systems ; Consistency ; Exact sciences and technology ; Gradient orientation histogram ; Histograms ; Kalman filter ; Object tracking ; Particle filter ; Pattern recognition. Digital image processing. Computational geometry ; Representations ; Tracking ; Visual</subject><ispartof>Computer vision and image understanding, 2011, Vol.115 (1), p.69-80</ispartof><rights>2010 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-e2ea67545732be262342653d2b7ce145fb95eb72e3cfdd630468cc7fb736c47f3</citedby><cites>FETCH-LOGICAL-c362t-e2ea67545732be262342653d2b7ce145fb95eb72e3cfdd630468cc7fb736c47f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23754014$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Zhenjun</creatorcontrib><creatorcontrib>Ye, Qixiang</creatorcontrib><creatorcontrib>Jiao, Jianbin</creatorcontrib><title>Combined feature evaluation for adaptive visual object tracking</title><title>Computer vision and image understanding</title><description>► A combined feature set for object tracking. ► A novel feature evaluation approach considering temporal consistency. ► A new application of traditional tracking algorithms to model feature confidence.
Existing visual tracking methods are challenged by object and background appearance variations, which often occur in a long duration tracking. In this paper, we propose a combined feature evaluation approach in filter frameworks for adaptive object tracking. First, a feature set is constructed by combining color histogram (HC) and gradient orientation histogram (HOG), which gives a representation of both color and contour. Then, to adapt to the appearance changes of the object and its background, these features are assigned with different confidences adaptively to make the features with higher discriminative ability play more important roles in the instantaneous tracking. To keep the temporal consistency, the feature confidences are evaluated based on Kalman and Particle filters. Experiments and comparisons demonstrate that object tracking with evaluated features have good performance even when objects go across complex backgrounds.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>C (programming language)</subject><subject>Color</subject><subject>Color histogram</subject><subject>Computer science; control theory; systems</subject><subject>Consistency</subject><subject>Exact sciences and technology</subject><subject>Gradient orientation histogram</subject><subject>Histograms</subject><subject>Kalman filter</subject><subject>Object tracking</subject><subject>Particle filter</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Representations</subject><subject>Tracking</subject><subject>Visual</subject><issn>1077-3142</issn><issn>1090-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU-9iKfWfDXZgiCy-AULXhS8hTSdSGq3WZO24L83ZRePnmYY3ndm3gehS4ILgom4aQszubGgOA1wVWDMj9CC4ArnlJUfx3MvZc4Ip6foLMYWY0J4RRbobu23teuhySzoYQyQwaS7UQ_O95n1IdON3g1ugmxycdRd5usWzJANQZsv13-eoxOruwgXh7pE748Pb-vnfPP69LK-3-SGCTrkQEELWfJSMloDFZRxKkrW0FoaILy0dVVCLSkwY5tGMMzFyhhpa8mE4dKyJbre790F_z1CHNTWRQNdp3vwY1QrXnEhU76kpHulCT7GAFbtgtvq8KMIVjMs1aoZlpphKVypBCuZrg7rdTS6s0H3xsU_J2Xpd0xm3e1eBynr5CCoaBz0BhoXEhbVePffmV9er3_x</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Han, Zhenjun</creator><creator>Ye, Qixiang</creator><creator>Jiao, Jianbin</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2011</creationdate><title>Combined feature evaluation for adaptive visual object tracking</title><author>Han, Zhenjun ; Ye, Qixiang ; Jiao, Jianbin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-e2ea67545732be262342653d2b7ce145fb95eb72e3cfdd630468cc7fb736c47f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>C (programming language)</topic><topic>Color</topic><topic>Color histogram</topic><topic>Computer science; control theory; systems</topic><topic>Consistency</topic><topic>Exact sciences and technology</topic><topic>Gradient orientation histogram</topic><topic>Histograms</topic><topic>Kalman filter</topic><topic>Object tracking</topic><topic>Particle filter</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Representations</topic><topic>Tracking</topic><topic>Visual</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Zhenjun</creatorcontrib><creatorcontrib>Ye, Qixiang</creatorcontrib><creatorcontrib>Jiao, Jianbin</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer vision and image understanding</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Zhenjun</au><au>Ye, Qixiang</au><au>Jiao, Jianbin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combined feature evaluation for adaptive visual object tracking</atitle><jtitle>Computer vision and image understanding</jtitle><date>2011</date><risdate>2011</risdate><volume>115</volume><issue>1</issue><spage>69</spage><epage>80</epage><pages>69-80</pages><issn>1077-3142</issn><eissn>1090-235X</eissn><coden>CVIUF4</coden><abstract>► A combined feature set for object tracking. ► A novel feature evaluation approach considering temporal consistency. ► A new application of traditional tracking algorithms to model feature confidence.
Existing visual tracking methods are challenged by object and background appearance variations, which often occur in a long duration tracking. In this paper, we propose a combined feature evaluation approach in filter frameworks for adaptive object tracking. First, a feature set is constructed by combining color histogram (HC) and gradient orientation histogram (HOG), which gives a representation of both color and contour. Then, to adapt to the appearance changes of the object and its background, these features are assigned with different confidences adaptively to make the features with higher discriminative ability play more important roles in the instantaneous tracking. To keep the temporal consistency, the feature confidences are evaluated based on Kalman and Particle filters. Experiments and comparisons demonstrate that object tracking with evaluated features have good performance even when objects go across complex backgrounds.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.cviu.2010.09.004</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1077-3142 |
ispartof | Computer vision and image understanding, 2011, Vol.115 (1), p.69-80 |
issn | 1077-3142 1090-235X |
language | eng |
recordid | cdi_proquest_miscellaneous_849467142 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Applied sciences Artificial intelligence C (programming language) Color Color histogram Computer science control theory systems Consistency Exact sciences and technology Gradient orientation histogram Histograms Kalman filter Object tracking Particle filter Pattern recognition. Digital image processing. Computational geometry Representations Tracking Visual |
title | Combined feature evaluation for adaptive visual object tracking |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A16%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combined%20feature%20evaluation%20for%20adaptive%20visual%20object%20tracking&rft.jtitle=Computer%20vision%20and%20image%20understanding&rft.au=Han,%20Zhenjun&rft.date=2011&rft.volume=115&rft.issue=1&rft.spage=69&rft.epage=80&rft.pages=69-80&rft.issn=1077-3142&rft.eissn=1090-235X&rft.coden=CVIUF4&rft_id=info:doi/10.1016/j.cviu.2010.09.004&rft_dat=%3Cproquest_cross%3E849467142%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c362t-e2ea67545732be262342653d2b7ce145fb95eb72e3cfdd630468cc7fb736c47f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=849467142&rft_id=info:pmid/&rfr_iscdi=true |