Loading…

Analysis and characterization of a mechanical sensor to monitor stress in interconnect features

A mechanical rotating stress sensor fabricated in copper has been characterized in 100 nm single damascene technology. Geometrical variations to the structure produce a distinctive behaviour which can be used to fit the actuating stress. Existing analytical models were tested and shown to be unable...

Full description

Saved in:
Bibliographic Details
Published in:Thin solid films 2010-10, Vol.519 (1), p.443-449
Main Authors: Wilson, Christopher J., Croes, Kristof, Tőkei, Zsolt, Beyer, Gerald P., Gallacher, Barry J., Bull, Steve J., Horsfall, Alton B., O'Neill, Anthony G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c311t-dc16a9362778cbc805d7a2e6ead688a14d0fd23cf2a59d867a1af1bc5bf040e3
container_end_page 449
container_issue 1
container_start_page 443
container_title Thin solid films
container_volume 519
creator Wilson, Christopher J.
Croes, Kristof
Tőkei, Zsolt
Beyer, Gerald P.
Gallacher, Barry J.
Bull, Steve J.
Horsfall, Alton B.
O'Neill, Anthony G.
description A mechanical rotating stress sensor fabricated in copper has been characterized in 100 nm single damascene technology. Geometrical variations to the structure produce a distinctive behaviour which can be used to fit the actuating stress. Existing analytical models were tested and shown to be unable to describe the structure due to geometric non-linearities not considered by these one-dimensional solutions. A model based on the large strain finite element method was developed to include this non-linearity and fully describe the sensor design for all geometrical variations. The stress determined from the Cu rotating sensors is comparable to measurements performed using high intensity X-ray diffraction on similar samples. Furthermore, the simulation methodology is validated for calibrated Al sensors. All of the studied samples show an excellent fit with the developed finite element analysis, demonstrating the validity of the model to predict smaller geometries, showing that the sensor can be utilized in future integration schemes and applied to other material systems.
doi_str_mv 10.1016/j.tsf.2010.07.082
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_849470914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0040609010010321</els_id><sourcerecordid>849470914</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-dc16a9362778cbc805d7a2e6ead688a14d0fd23cf2a59d867a1af1bc5bf040e3</originalsourceid><addsrcrecordid>eNp9kEFLJDEQhcOyCzu6_oC95bJ46rGS7ul0sycRdRcEL95DTVLBDD2Jm8oI-uuNjHhcKEhV8t4L9QnxU8FagRovduvKYa2hzWDWMOkvYqUmM3fa9OqrWAEM0I0ww3dxwrwDAKV1vxL2MuHywpElJi_dIxZ0lUp8xRpzkjlIlHtq9yk6XCRT4lxkzXKfU6yt5VqIWcbUqhldTolclYGwHtrLD_Et4MJ09nGeioeb64erP93d_e3fq8u7zvVK1c47NeLcj9qYyW3dBBtvUNNI6MdpQjV4CF73LmjczH4aDSoMaus229AWo_5UnB9jn0r-dyCudh_Z0bJgonxgOw3zYGBWQ1Oqo9KVzFwo2KcS91herAL7jtLubENp31FaMLahbJ5fH-nIjUIomFzkT6MeFAyzGZvu91FHbdPnSMWyi5Qc-VgaFOtz_M8vb2Hci2E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>849470914</pqid></control><display><type>article</type><title>Analysis and characterization of a mechanical sensor to monitor stress in interconnect features</title><source>Elsevier</source><creator>Wilson, Christopher J. ; Croes, Kristof ; Tőkei, Zsolt ; Beyer, Gerald P. ; Gallacher, Barry J. ; Bull, Steve J. ; Horsfall, Alton B. ; O'Neill, Anthony G.</creator><creatorcontrib>Wilson, Christopher J. ; Croes, Kristof ; Tőkei, Zsolt ; Beyer, Gerald P. ; Gallacher, Barry J. ; Bull, Steve J. ; Horsfall, Alton B. ; O'Neill, Anthony G.</creatorcontrib><description>A mechanical rotating stress sensor fabricated in copper has been characterized in 100 nm single damascene technology. Geometrical variations to the structure produce a distinctive behaviour which can be used to fit the actuating stress. Existing analytical models were tested and shown to be unable to describe the structure due to geometric non-linearities not considered by these one-dimensional solutions. A model based on the large strain finite element method was developed to include this non-linearity and fully describe the sensor design for all geometrical variations. The stress determined from the Cu rotating sensors is comparable to measurements performed using high intensity X-ray diffraction on similar samples. Furthermore, the simulation methodology is validated for calibrated Al sensors. All of the studied samples show an excellent fit with the developed finite element analysis, demonstrating the validity of the model to predict smaller geometries, showing that the sensor can be utilized in future integration schemes and applied to other material systems.</description><identifier>ISSN: 0040-6090</identifier><identifier>EISSN: 1879-2731</identifier><identifier>DOI: 10.1016/j.tsf.2010.07.082</identifier><identifier>CODEN: THSFAP</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Computer simulation ; Copper ; Exact sciences and technology ; Finite element ; Finite element method ; Instruments for strain, force and torque ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Interconnect ; Mathematical analysis ; Mathematical models ; Mechanical instruments, equipment and techniques ; Nonlinearity ; Physics ; Rotating ; Sensor ; Sensors ; Stress ; Stresses</subject><ispartof>Thin solid films, 2010-10, Vol.519 (1), p.443-449</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c311t-dc16a9362778cbc805d7a2e6ead688a14d0fd23cf2a59d867a1af1bc5bf040e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24104976$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wilson, Christopher J.</creatorcontrib><creatorcontrib>Croes, Kristof</creatorcontrib><creatorcontrib>Tőkei, Zsolt</creatorcontrib><creatorcontrib>Beyer, Gerald P.</creatorcontrib><creatorcontrib>Gallacher, Barry J.</creatorcontrib><creatorcontrib>Bull, Steve J.</creatorcontrib><creatorcontrib>Horsfall, Alton B.</creatorcontrib><creatorcontrib>O'Neill, Anthony G.</creatorcontrib><title>Analysis and characterization of a mechanical sensor to monitor stress in interconnect features</title><title>Thin solid films</title><description>A mechanical rotating stress sensor fabricated in copper has been characterized in 100 nm single damascene technology. Geometrical variations to the structure produce a distinctive behaviour which can be used to fit the actuating stress. Existing analytical models were tested and shown to be unable to describe the structure due to geometric non-linearities not considered by these one-dimensional solutions. A model based on the large strain finite element method was developed to include this non-linearity and fully describe the sensor design for all geometrical variations. The stress determined from the Cu rotating sensors is comparable to measurements performed using high intensity X-ray diffraction on similar samples. Furthermore, the simulation methodology is validated for calibrated Al sensors. All of the studied samples show an excellent fit with the developed finite element analysis, demonstrating the validity of the model to predict smaller geometries, showing that the sensor can be utilized in future integration schemes and applied to other material systems.</description><subject>Computer simulation</subject><subject>Copper</subject><subject>Exact sciences and technology</subject><subject>Finite element</subject><subject>Finite element method</subject><subject>Instruments for strain, force and torque</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Interconnect</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mechanical instruments, equipment and techniques</subject><subject>Nonlinearity</subject><subject>Physics</subject><subject>Rotating</subject><subject>Sensor</subject><subject>Sensors</subject><subject>Stress</subject><subject>Stresses</subject><issn>0040-6090</issn><issn>1879-2731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLJDEQhcOyCzu6_oC95bJ46rGS7ul0sycRdRcEL95DTVLBDD2Jm8oI-uuNjHhcKEhV8t4L9QnxU8FagRovduvKYa2hzWDWMOkvYqUmM3fa9OqrWAEM0I0ww3dxwrwDAKV1vxL2MuHywpElJi_dIxZ0lUp8xRpzkjlIlHtq9yk6XCRT4lxkzXKfU6yt5VqIWcbUqhldTolclYGwHtrLD_Et4MJ09nGeioeb64erP93d_e3fq8u7zvVK1c47NeLcj9qYyW3dBBtvUNNI6MdpQjV4CF73LmjczH4aDSoMaus229AWo_5UnB9jn0r-dyCudh_Z0bJgonxgOw3zYGBWQ1Oqo9KVzFwo2KcS91herAL7jtLubENp31FaMLahbJ5fH-nIjUIomFzkT6MeFAyzGZvu91FHbdPnSMWyi5Qc-VgaFOtz_M8vb2Hci2E</recordid><startdate>20101029</startdate><enddate>20101029</enddate><creator>Wilson, Christopher J.</creator><creator>Croes, Kristof</creator><creator>Tőkei, Zsolt</creator><creator>Beyer, Gerald P.</creator><creator>Gallacher, Barry J.</creator><creator>Bull, Steve J.</creator><creator>Horsfall, Alton B.</creator><creator>O'Neill, Anthony G.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20101029</creationdate><title>Analysis and characterization of a mechanical sensor to monitor stress in interconnect features</title><author>Wilson, Christopher J. ; Croes, Kristof ; Tőkei, Zsolt ; Beyer, Gerald P. ; Gallacher, Barry J. ; Bull, Steve J. ; Horsfall, Alton B. ; O'Neill, Anthony G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-dc16a9362778cbc805d7a2e6ead688a14d0fd23cf2a59d867a1af1bc5bf040e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Computer simulation</topic><topic>Copper</topic><topic>Exact sciences and technology</topic><topic>Finite element</topic><topic>Finite element method</topic><topic>Instruments for strain, force and torque</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Interconnect</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mechanical instruments, equipment and techniques</topic><topic>Nonlinearity</topic><topic>Physics</topic><topic>Rotating</topic><topic>Sensor</topic><topic>Sensors</topic><topic>Stress</topic><topic>Stresses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wilson, Christopher J.</creatorcontrib><creatorcontrib>Croes, Kristof</creatorcontrib><creatorcontrib>Tőkei, Zsolt</creatorcontrib><creatorcontrib>Beyer, Gerald P.</creatorcontrib><creatorcontrib>Gallacher, Barry J.</creatorcontrib><creatorcontrib>Bull, Steve J.</creatorcontrib><creatorcontrib>Horsfall, Alton B.</creatorcontrib><creatorcontrib>O'Neill, Anthony G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Thin solid films</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilson, Christopher J.</au><au>Croes, Kristof</au><au>Tőkei, Zsolt</au><au>Beyer, Gerald P.</au><au>Gallacher, Barry J.</au><au>Bull, Steve J.</au><au>Horsfall, Alton B.</au><au>O'Neill, Anthony G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis and characterization of a mechanical sensor to monitor stress in interconnect features</atitle><jtitle>Thin solid films</jtitle><date>2010-10-29</date><risdate>2010</risdate><volume>519</volume><issue>1</issue><spage>443</spage><epage>449</epage><pages>443-449</pages><issn>0040-6090</issn><eissn>1879-2731</eissn><coden>THSFAP</coden><abstract>A mechanical rotating stress sensor fabricated in copper has been characterized in 100 nm single damascene technology. Geometrical variations to the structure produce a distinctive behaviour which can be used to fit the actuating stress. Existing analytical models were tested and shown to be unable to describe the structure due to geometric non-linearities not considered by these one-dimensional solutions. A model based on the large strain finite element method was developed to include this non-linearity and fully describe the sensor design for all geometrical variations. The stress determined from the Cu rotating sensors is comparable to measurements performed using high intensity X-ray diffraction on similar samples. Furthermore, the simulation methodology is validated for calibrated Al sensors. All of the studied samples show an excellent fit with the developed finite element analysis, demonstrating the validity of the model to predict smaller geometries, showing that the sensor can be utilized in future integration schemes and applied to other material systems.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.tsf.2010.07.082</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0040-6090
ispartof Thin solid films, 2010-10, Vol.519 (1), p.443-449
issn 0040-6090
1879-2731
language eng
recordid cdi_proquest_miscellaneous_849470914
source Elsevier
subjects Computer simulation
Copper
Exact sciences and technology
Finite element
Finite element method
Instruments for strain, force and torque
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
Interconnect
Mathematical analysis
Mathematical models
Mechanical instruments, equipment and techniques
Nonlinearity
Physics
Rotating
Sensor
Sensors
Stress
Stresses
title Analysis and characterization of a mechanical sensor to monitor stress in interconnect features
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T12%3A06%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20and%20characterization%20of%20a%20mechanical%20sensor%20to%20monitor%20stress%20in%20interconnect%20features&rft.jtitle=Thin%20solid%20films&rft.au=Wilson,%20Christopher%20J.&rft.date=2010-10-29&rft.volume=519&rft.issue=1&rft.spage=443&rft.epage=449&rft.pages=443-449&rft.issn=0040-6090&rft.eissn=1879-2731&rft.coden=THSFAP&rft_id=info:doi/10.1016/j.tsf.2010.07.082&rft_dat=%3Cproquest_cross%3E849470914%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c311t-dc16a9362778cbc805d7a2e6ead688a14d0fd23cf2a59d867a1af1bc5bf040e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=849470914&rft_id=info:pmid/&rfr_iscdi=true