Loading…
Analysis and characterization of a mechanical sensor to monitor stress in interconnect features
A mechanical rotating stress sensor fabricated in copper has been characterized in 100 nm single damascene technology. Geometrical variations to the structure produce a distinctive behaviour which can be used to fit the actuating stress. Existing analytical models were tested and shown to be unable...
Saved in:
Published in: | Thin solid films 2010-10, Vol.519 (1), p.443-449 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c311t-dc16a9362778cbc805d7a2e6ead688a14d0fd23cf2a59d867a1af1bc5bf040e3 |
container_end_page | 449 |
container_issue | 1 |
container_start_page | 443 |
container_title | Thin solid films |
container_volume | 519 |
creator | Wilson, Christopher J. Croes, Kristof Tőkei, Zsolt Beyer, Gerald P. Gallacher, Barry J. Bull, Steve J. Horsfall, Alton B. O'Neill, Anthony G. |
description | A mechanical rotating stress sensor fabricated in copper has been characterized in 100
nm single damascene technology. Geometrical variations to the structure produce a distinctive behaviour which can be used to fit the actuating stress. Existing analytical models were tested and shown to be unable to describe the structure due to geometric non-linearities not considered by these one-dimensional solutions. A model based on the large strain finite element method was developed to include this non-linearity and fully describe the sensor design for all geometrical variations. The stress determined from the Cu rotating sensors is comparable to measurements performed using high intensity X-ray diffraction on similar samples. Furthermore, the simulation methodology is validated for calibrated Al sensors. All of the studied samples show an excellent fit with the developed finite element analysis, demonstrating the validity of the model to predict smaller geometries, showing that the sensor can be utilized in future integration schemes and applied to other material systems. |
doi_str_mv | 10.1016/j.tsf.2010.07.082 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_849470914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0040609010010321</els_id><sourcerecordid>849470914</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-dc16a9362778cbc805d7a2e6ead688a14d0fd23cf2a59d867a1af1bc5bf040e3</originalsourceid><addsrcrecordid>eNp9kEFLJDEQhcOyCzu6_oC95bJ46rGS7ul0sycRdRcEL95DTVLBDD2Jm8oI-uuNjHhcKEhV8t4L9QnxU8FagRovduvKYa2hzWDWMOkvYqUmM3fa9OqrWAEM0I0ww3dxwrwDAKV1vxL2MuHywpElJi_dIxZ0lUp8xRpzkjlIlHtq9yk6XCRT4lxkzXKfU6yt5VqIWcbUqhldTolclYGwHtrLD_Et4MJ09nGeioeb64erP93d_e3fq8u7zvVK1c47NeLcj9qYyW3dBBtvUNNI6MdpQjV4CF73LmjczH4aDSoMaus229AWo_5UnB9jn0r-dyCudh_Z0bJgonxgOw3zYGBWQ1Oqo9KVzFwo2KcS91herAL7jtLubENp31FaMLahbJ5fH-nIjUIomFzkT6MeFAyzGZvu91FHbdPnSMWyi5Qc-VgaFOtz_M8vb2Hci2E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>849470914</pqid></control><display><type>article</type><title>Analysis and characterization of a mechanical sensor to monitor stress in interconnect features</title><source>Elsevier</source><creator>Wilson, Christopher J. ; Croes, Kristof ; Tőkei, Zsolt ; Beyer, Gerald P. ; Gallacher, Barry J. ; Bull, Steve J. ; Horsfall, Alton B. ; O'Neill, Anthony G.</creator><creatorcontrib>Wilson, Christopher J. ; Croes, Kristof ; Tőkei, Zsolt ; Beyer, Gerald P. ; Gallacher, Barry J. ; Bull, Steve J. ; Horsfall, Alton B. ; O'Neill, Anthony G.</creatorcontrib><description>A mechanical rotating stress sensor fabricated in copper has been characterized in 100
nm single damascene technology. Geometrical variations to the structure produce a distinctive behaviour which can be used to fit the actuating stress. Existing analytical models were tested and shown to be unable to describe the structure due to geometric non-linearities not considered by these one-dimensional solutions. A model based on the large strain finite element method was developed to include this non-linearity and fully describe the sensor design for all geometrical variations. The stress determined from the Cu rotating sensors is comparable to measurements performed using high intensity X-ray diffraction on similar samples. Furthermore, the simulation methodology is validated for calibrated Al sensors. All of the studied samples show an excellent fit with the developed finite element analysis, demonstrating the validity of the model to predict smaller geometries, showing that the sensor can be utilized in future integration schemes and applied to other material systems.</description><identifier>ISSN: 0040-6090</identifier><identifier>EISSN: 1879-2731</identifier><identifier>DOI: 10.1016/j.tsf.2010.07.082</identifier><identifier>CODEN: THSFAP</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Computer simulation ; Copper ; Exact sciences and technology ; Finite element ; Finite element method ; Instruments for strain, force and torque ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Interconnect ; Mathematical analysis ; Mathematical models ; Mechanical instruments, equipment and techniques ; Nonlinearity ; Physics ; Rotating ; Sensor ; Sensors ; Stress ; Stresses</subject><ispartof>Thin solid films, 2010-10, Vol.519 (1), p.443-449</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c311t-dc16a9362778cbc805d7a2e6ead688a14d0fd23cf2a59d867a1af1bc5bf040e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24104976$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wilson, Christopher J.</creatorcontrib><creatorcontrib>Croes, Kristof</creatorcontrib><creatorcontrib>Tőkei, Zsolt</creatorcontrib><creatorcontrib>Beyer, Gerald P.</creatorcontrib><creatorcontrib>Gallacher, Barry J.</creatorcontrib><creatorcontrib>Bull, Steve J.</creatorcontrib><creatorcontrib>Horsfall, Alton B.</creatorcontrib><creatorcontrib>O'Neill, Anthony G.</creatorcontrib><title>Analysis and characterization of a mechanical sensor to monitor stress in interconnect features</title><title>Thin solid films</title><description>A mechanical rotating stress sensor fabricated in copper has been characterized in 100
nm single damascene technology. Geometrical variations to the structure produce a distinctive behaviour which can be used to fit the actuating stress. Existing analytical models were tested and shown to be unable to describe the structure due to geometric non-linearities not considered by these one-dimensional solutions. A model based on the large strain finite element method was developed to include this non-linearity and fully describe the sensor design for all geometrical variations. The stress determined from the Cu rotating sensors is comparable to measurements performed using high intensity X-ray diffraction on similar samples. Furthermore, the simulation methodology is validated for calibrated Al sensors. All of the studied samples show an excellent fit with the developed finite element analysis, demonstrating the validity of the model to predict smaller geometries, showing that the sensor can be utilized in future integration schemes and applied to other material systems.</description><subject>Computer simulation</subject><subject>Copper</subject><subject>Exact sciences and technology</subject><subject>Finite element</subject><subject>Finite element method</subject><subject>Instruments for strain, force and torque</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Interconnect</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mechanical instruments, equipment and techniques</subject><subject>Nonlinearity</subject><subject>Physics</subject><subject>Rotating</subject><subject>Sensor</subject><subject>Sensors</subject><subject>Stress</subject><subject>Stresses</subject><issn>0040-6090</issn><issn>1879-2731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLJDEQhcOyCzu6_oC95bJ46rGS7ul0sycRdRcEL95DTVLBDD2Jm8oI-uuNjHhcKEhV8t4L9QnxU8FagRovduvKYa2hzWDWMOkvYqUmM3fa9OqrWAEM0I0ww3dxwrwDAKV1vxL2MuHywpElJi_dIxZ0lUp8xRpzkjlIlHtq9yk6XCRT4lxkzXKfU6yt5VqIWcbUqhldTolclYGwHtrLD_Et4MJ09nGeioeb64erP93d_e3fq8u7zvVK1c47NeLcj9qYyW3dBBtvUNNI6MdpQjV4CF73LmjczH4aDSoMaus229AWo_5UnB9jn0r-dyCudh_Z0bJgonxgOw3zYGBWQ1Oqo9KVzFwo2KcS91herAL7jtLubENp31FaMLahbJ5fH-nIjUIomFzkT6MeFAyzGZvu91FHbdPnSMWyi5Qc-VgaFOtz_M8vb2Hci2E</recordid><startdate>20101029</startdate><enddate>20101029</enddate><creator>Wilson, Christopher J.</creator><creator>Croes, Kristof</creator><creator>Tőkei, Zsolt</creator><creator>Beyer, Gerald P.</creator><creator>Gallacher, Barry J.</creator><creator>Bull, Steve J.</creator><creator>Horsfall, Alton B.</creator><creator>O'Neill, Anthony G.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20101029</creationdate><title>Analysis and characterization of a mechanical sensor to monitor stress in interconnect features</title><author>Wilson, Christopher J. ; Croes, Kristof ; Tőkei, Zsolt ; Beyer, Gerald P. ; Gallacher, Barry J. ; Bull, Steve J. ; Horsfall, Alton B. ; O'Neill, Anthony G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-dc16a9362778cbc805d7a2e6ead688a14d0fd23cf2a59d867a1af1bc5bf040e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Computer simulation</topic><topic>Copper</topic><topic>Exact sciences and technology</topic><topic>Finite element</topic><topic>Finite element method</topic><topic>Instruments for strain, force and torque</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Interconnect</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mechanical instruments, equipment and techniques</topic><topic>Nonlinearity</topic><topic>Physics</topic><topic>Rotating</topic><topic>Sensor</topic><topic>Sensors</topic><topic>Stress</topic><topic>Stresses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wilson, Christopher J.</creatorcontrib><creatorcontrib>Croes, Kristof</creatorcontrib><creatorcontrib>Tőkei, Zsolt</creatorcontrib><creatorcontrib>Beyer, Gerald P.</creatorcontrib><creatorcontrib>Gallacher, Barry J.</creatorcontrib><creatorcontrib>Bull, Steve J.</creatorcontrib><creatorcontrib>Horsfall, Alton B.</creatorcontrib><creatorcontrib>O'Neill, Anthony G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Thin solid films</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilson, Christopher J.</au><au>Croes, Kristof</au><au>Tőkei, Zsolt</au><au>Beyer, Gerald P.</au><au>Gallacher, Barry J.</au><au>Bull, Steve J.</au><au>Horsfall, Alton B.</au><au>O'Neill, Anthony G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis and characterization of a mechanical sensor to monitor stress in interconnect features</atitle><jtitle>Thin solid films</jtitle><date>2010-10-29</date><risdate>2010</risdate><volume>519</volume><issue>1</issue><spage>443</spage><epage>449</epage><pages>443-449</pages><issn>0040-6090</issn><eissn>1879-2731</eissn><coden>THSFAP</coden><abstract>A mechanical rotating stress sensor fabricated in copper has been characterized in 100
nm single damascene technology. Geometrical variations to the structure produce a distinctive behaviour which can be used to fit the actuating stress. Existing analytical models were tested and shown to be unable to describe the structure due to geometric non-linearities not considered by these one-dimensional solutions. A model based on the large strain finite element method was developed to include this non-linearity and fully describe the sensor design for all geometrical variations. The stress determined from the Cu rotating sensors is comparable to measurements performed using high intensity X-ray diffraction on similar samples. Furthermore, the simulation methodology is validated for calibrated Al sensors. All of the studied samples show an excellent fit with the developed finite element analysis, demonstrating the validity of the model to predict smaller geometries, showing that the sensor can be utilized in future integration schemes and applied to other material systems.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.tsf.2010.07.082</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-6090 |
ispartof | Thin solid films, 2010-10, Vol.519 (1), p.443-449 |
issn | 0040-6090 1879-2731 |
language | eng |
recordid | cdi_proquest_miscellaneous_849470914 |
source | Elsevier |
subjects | Computer simulation Copper Exact sciences and technology Finite element Finite element method Instruments for strain, force and torque Instruments, apparatus, components and techniques common to several branches of physics and astronomy Interconnect Mathematical analysis Mathematical models Mechanical instruments, equipment and techniques Nonlinearity Physics Rotating Sensor Sensors Stress Stresses |
title | Analysis and characterization of a mechanical sensor to monitor stress in interconnect features |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T12%3A06%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20and%20characterization%20of%20a%20mechanical%20sensor%20to%20monitor%20stress%20in%20interconnect%20features&rft.jtitle=Thin%20solid%20films&rft.au=Wilson,%20Christopher%20J.&rft.date=2010-10-29&rft.volume=519&rft.issue=1&rft.spage=443&rft.epage=449&rft.pages=443-449&rft.issn=0040-6090&rft.eissn=1879-2731&rft.coden=THSFAP&rft_id=info:doi/10.1016/j.tsf.2010.07.082&rft_dat=%3Cproquest_cross%3E849470914%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c311t-dc16a9362778cbc805d7a2e6ead688a14d0fd23cf2a59d867a1af1bc5bf040e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=849470914&rft_id=info:pmid/&rfr_iscdi=true |