Loading…
Improved Quantum Evolutionary Computation Based on Particle Swarm Optimization and Two-Crossovers
A quantum evolutionary computation (QEC) algorithm with particle swarm optimization (PSO) and two-crossovers is proposed to overcome identified limitations. PSO is adopted to update the Q-bit automatically, and two-crossovers are applied to improve the convergence quality in the basic QEC model. Thi...
Saved in:
Published in: | Chinese physics letters 2009-12, Vol.26 (12), p.120304-120304 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c314t-f15e3c300c99c3e0c5b716457e7b383bc1dab9eeec7736d8faa81ac9b3eba1943 |
container_end_page | 120304 |
container_issue | 12 |
container_start_page | 120304 |
container_title | Chinese physics letters |
container_volume | 26 |
creator | Duan, Hai-Bin Xing, Zhi-Hui |
description | A quantum evolutionary computation (QEC) algorithm with particle swarm optimization (PSO) and two-crossovers is proposed to overcome identified limitations. PSO is adopted to update the Q-bit automatically, and two-crossovers are applied to improve the convergence quality in the basic QEC model. This hybrid strategy can effectively employ both the ability to jump out of the local minima and the capacity of searching the global optimum. The performance of the proposed approach is compared with basic QEC on the standard unconstrained scalable benchmark problem that numerous hard combinatorial optimization problems can be formulated. The experimental results show that the proposed method outperforms the basic QEC quite significantly. |
doi_str_mv | 10.1088/0256-307X/26/12/120304 |
format | article |
fullrecord | <record><control><sourceid>proquest_iop_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_849471115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>849471115</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-f15e3c300c99c3e0c5b716457e7b383bc1dab9eeec7736d8faa81ac9b3eba1943</originalsourceid><addsrcrecordid>eNqNkEFLxDAQhYMouK7-BenNU91MkzbtUZdVFxZWcQVvYZqmUGmbmrS76K83peJFD8LAzMD3hnmPkEug10DTdEGjOAkZFa-LKFlA5Isyyo_IDASHkMWcHpPZD3RKzpx7oxQgBZgRXDedNXtdBE8Dtv3QBKu9qYe-Mi3aj2Bpmm7ocVyDW3Qe88Mj2r5StQ6eD2ibYNv1VVN9ThC2RbA7mHBpjXP-rnXn5KTE2umL7z4nL3er3fIh3Gzv18ubTagY8D4sIdZMMUpVlimmqYpzAQmPhRY5S1muoMA801orIVhSpCViCqiynOkcIeNsTq6mu97P-6BdL5vKKV3X2GozOJnyjAsAiD2ZTKQan7S6lJ2tGm9XApVjpHJMS45pySiREMkpUi-ESViZ7v-a8Lfmb1Z2Rcm-ADANiHI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>849471115</pqid></control><display><type>article</type><title>Improved Quantum Evolutionary Computation Based on Particle Swarm Optimization and Two-Crossovers</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Duan, Hai-Bin ; Xing, Zhi-Hui</creator><creatorcontrib>Duan, Hai-Bin ; Xing, Zhi-Hui</creatorcontrib><description>A quantum evolutionary computation (QEC) algorithm with particle swarm optimization (PSO) and two-crossovers is proposed to overcome identified limitations. PSO is adopted to update the Q-bit automatically, and two-crossovers are applied to improve the convergence quality in the basic QEC model. This hybrid strategy can effectively employ both the ability to jump out of the local minima and the capacity of searching the global optimum. The performance of the proposed approach is compared with basic QEC on the standard unconstrained scalable benchmark problem that numerous hard combinatorial optimization problems can be formulated. The experimental results show that the proposed method outperforms the basic QEC quite significantly.</description><identifier>ISSN: 0256-307X</identifier><identifier>EISSN: 1741-3540</identifier><identifier>DOI: 10.1088/0256-307X/26/12/120304</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Benchmarking ; Combinatorial analysis ; Convergence ; Evolutionary algorithms ; Optimization ; Strategy</subject><ispartof>Chinese physics letters, 2009-12, Vol.26 (12), p.120304-120304</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-f15e3c300c99c3e0c5b716457e7b383bc1dab9eeec7736d8faa81ac9b3eba1943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Duan, Hai-Bin</creatorcontrib><creatorcontrib>Xing, Zhi-Hui</creatorcontrib><title>Improved Quantum Evolutionary Computation Based on Particle Swarm Optimization and Two-Crossovers</title><title>Chinese physics letters</title><description>A quantum evolutionary computation (QEC) algorithm with particle swarm optimization (PSO) and two-crossovers is proposed to overcome identified limitations. PSO is adopted to update the Q-bit automatically, and two-crossovers are applied to improve the convergence quality in the basic QEC model. This hybrid strategy can effectively employ both the ability to jump out of the local minima and the capacity of searching the global optimum. The performance of the proposed approach is compared with basic QEC on the standard unconstrained scalable benchmark problem that numerous hard combinatorial optimization problems can be formulated. The experimental results show that the proposed method outperforms the basic QEC quite significantly.</description><subject>Benchmarking</subject><subject>Combinatorial analysis</subject><subject>Convergence</subject><subject>Evolutionary algorithms</subject><subject>Optimization</subject><subject>Strategy</subject><issn>0256-307X</issn><issn>1741-3540</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNkEFLxDAQhYMouK7-BenNU91MkzbtUZdVFxZWcQVvYZqmUGmbmrS76K83peJFD8LAzMD3hnmPkEug10DTdEGjOAkZFa-LKFlA5Isyyo_IDASHkMWcHpPZD3RKzpx7oxQgBZgRXDedNXtdBE8Dtv3QBKu9qYe-Mi3aj2Bpmm7ocVyDW3Qe88Mj2r5StQ6eD2ibYNv1VVN9ThC2RbA7mHBpjXP-rnXn5KTE2umL7z4nL3er3fIh3Gzv18ubTagY8D4sIdZMMUpVlimmqYpzAQmPhRY5S1muoMA801orIVhSpCViCqiynOkcIeNsTq6mu97P-6BdL5vKKV3X2GozOJnyjAsAiD2ZTKQan7S6lJ2tGm9XApVjpHJMS45pySiREMkpUi-ESViZ7v-a8Lfmb1Z2Rcm-ADANiHI</recordid><startdate>20091201</startdate><enddate>20091201</enddate><creator>Duan, Hai-Bin</creator><creator>Xing, Zhi-Hui</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20091201</creationdate><title>Improved Quantum Evolutionary Computation Based on Particle Swarm Optimization and Two-Crossovers</title><author>Duan, Hai-Bin ; Xing, Zhi-Hui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-f15e3c300c99c3e0c5b716457e7b383bc1dab9eeec7736d8faa81ac9b3eba1943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Benchmarking</topic><topic>Combinatorial analysis</topic><topic>Convergence</topic><topic>Evolutionary algorithms</topic><topic>Optimization</topic><topic>Strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duan, Hai-Bin</creatorcontrib><creatorcontrib>Xing, Zhi-Hui</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chinese physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duan, Hai-Bin</au><au>Xing, Zhi-Hui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Quantum Evolutionary Computation Based on Particle Swarm Optimization and Two-Crossovers</atitle><jtitle>Chinese physics letters</jtitle><date>2009-12-01</date><risdate>2009</risdate><volume>26</volume><issue>12</issue><spage>120304</spage><epage>120304</epage><pages>120304-120304</pages><issn>0256-307X</issn><eissn>1741-3540</eissn><abstract>A quantum evolutionary computation (QEC) algorithm with particle swarm optimization (PSO) and two-crossovers is proposed to overcome identified limitations. PSO is adopted to update the Q-bit automatically, and two-crossovers are applied to improve the convergence quality in the basic QEC model. This hybrid strategy can effectively employ both the ability to jump out of the local minima and the capacity of searching the global optimum. The performance of the proposed approach is compared with basic QEC on the standard unconstrained scalable benchmark problem that numerous hard combinatorial optimization problems can be formulated. The experimental results show that the proposed method outperforms the basic QEC quite significantly.</abstract><pub>IOP Publishing</pub><doi>10.1088/0256-307X/26/12/120304</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0256-307X |
ispartof | Chinese physics letters, 2009-12, Vol.26 (12), p.120304-120304 |
issn | 0256-307X 1741-3540 |
language | eng |
recordid | cdi_proquest_miscellaneous_849471115 |
source | Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List) |
subjects | Benchmarking Combinatorial analysis Convergence Evolutionary algorithms Optimization Strategy |
title | Improved Quantum Evolutionary Computation Based on Particle Swarm Optimization and Two-Crossovers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T04%3A46%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Quantum%20Evolutionary%20Computation%20Based%20on%20Particle%20Swarm%20Optimization%20and%20Two-Crossovers&rft.jtitle=Chinese%20physics%20letters&rft.au=Duan,%20Hai-Bin&rft.date=2009-12-01&rft.volume=26&rft.issue=12&rft.spage=120304&rft.epage=120304&rft.pages=120304-120304&rft.issn=0256-307X&rft.eissn=1741-3540&rft_id=info:doi/10.1088/0256-307X/26/12/120304&rft_dat=%3Cproquest_iop_p%3E849471115%3C/proquest_iop_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c314t-f15e3c300c99c3e0c5b716457e7b383bc1dab9eeec7736d8faa81ac9b3eba1943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=849471115&rft_id=info:pmid/&rfr_iscdi=true |