Loading…

Improved Quantum Evolutionary Computation Based on Particle Swarm Optimization and Two-Crossovers

A quantum evolutionary computation (QEC) algorithm with particle swarm optimization (PSO) and two-crossovers is proposed to overcome identified limitations. PSO is adopted to update the Q-bit automatically, and two-crossovers are applied to improve the convergence quality in the basic QEC model. Thi...

Full description

Saved in:
Bibliographic Details
Published in:Chinese physics letters 2009-12, Vol.26 (12), p.120304-120304
Main Authors: Duan, Hai-Bin, Xing, Zhi-Hui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c314t-f15e3c300c99c3e0c5b716457e7b383bc1dab9eeec7736d8faa81ac9b3eba1943
container_end_page 120304
container_issue 12
container_start_page 120304
container_title Chinese physics letters
container_volume 26
creator Duan, Hai-Bin
Xing, Zhi-Hui
description A quantum evolutionary computation (QEC) algorithm with particle swarm optimization (PSO) and two-crossovers is proposed to overcome identified limitations. PSO is adopted to update the Q-bit automatically, and two-crossovers are applied to improve the convergence quality in the basic QEC model. This hybrid strategy can effectively employ both the ability to jump out of the local minima and the capacity of searching the global optimum. The performance of the proposed approach is compared with basic QEC on the standard unconstrained scalable benchmark problem that numerous hard combinatorial optimization problems can be formulated. The experimental results show that the proposed method outperforms the basic QEC quite significantly.
doi_str_mv 10.1088/0256-307X/26/12/120304
format article
fullrecord <record><control><sourceid>proquest_iop_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_849471115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>849471115</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-f15e3c300c99c3e0c5b716457e7b383bc1dab9eeec7736d8faa81ac9b3eba1943</originalsourceid><addsrcrecordid>eNqNkEFLxDAQhYMouK7-BenNU91MkzbtUZdVFxZWcQVvYZqmUGmbmrS76K83peJFD8LAzMD3hnmPkEug10DTdEGjOAkZFa-LKFlA5Isyyo_IDASHkMWcHpPZD3RKzpx7oxQgBZgRXDedNXtdBE8Dtv3QBKu9qYe-Mi3aj2Bpmm7ocVyDW3Qe88Mj2r5StQ6eD2ibYNv1VVN9ThC2RbA7mHBpjXP-rnXn5KTE2umL7z4nL3er3fIh3Gzv18ubTagY8D4sIdZMMUpVlimmqYpzAQmPhRY5S1muoMA801orIVhSpCViCqiynOkcIeNsTq6mu97P-6BdL5vKKV3X2GozOJnyjAsAiD2ZTKQan7S6lJ2tGm9XApVjpHJMS45pySiREMkpUi-ESViZ7v-a8Lfmb1Z2Rcm-ADANiHI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>849471115</pqid></control><display><type>article</type><title>Improved Quantum Evolutionary Computation Based on Particle Swarm Optimization and Two-Crossovers</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Duan, Hai-Bin ; Xing, Zhi-Hui</creator><creatorcontrib>Duan, Hai-Bin ; Xing, Zhi-Hui</creatorcontrib><description>A quantum evolutionary computation (QEC) algorithm with particle swarm optimization (PSO) and two-crossovers is proposed to overcome identified limitations. PSO is adopted to update the Q-bit automatically, and two-crossovers are applied to improve the convergence quality in the basic QEC model. This hybrid strategy can effectively employ both the ability to jump out of the local minima and the capacity of searching the global optimum. The performance of the proposed approach is compared with basic QEC on the standard unconstrained scalable benchmark problem that numerous hard combinatorial optimization problems can be formulated. The experimental results show that the proposed method outperforms the basic QEC quite significantly.</description><identifier>ISSN: 0256-307X</identifier><identifier>EISSN: 1741-3540</identifier><identifier>DOI: 10.1088/0256-307X/26/12/120304</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Benchmarking ; Combinatorial analysis ; Convergence ; Evolutionary algorithms ; Optimization ; Strategy</subject><ispartof>Chinese physics letters, 2009-12, Vol.26 (12), p.120304-120304</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-f15e3c300c99c3e0c5b716457e7b383bc1dab9eeec7736d8faa81ac9b3eba1943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Duan, Hai-Bin</creatorcontrib><creatorcontrib>Xing, Zhi-Hui</creatorcontrib><title>Improved Quantum Evolutionary Computation Based on Particle Swarm Optimization and Two-Crossovers</title><title>Chinese physics letters</title><description>A quantum evolutionary computation (QEC) algorithm with particle swarm optimization (PSO) and two-crossovers is proposed to overcome identified limitations. PSO is adopted to update the Q-bit automatically, and two-crossovers are applied to improve the convergence quality in the basic QEC model. This hybrid strategy can effectively employ both the ability to jump out of the local minima and the capacity of searching the global optimum. The performance of the proposed approach is compared with basic QEC on the standard unconstrained scalable benchmark problem that numerous hard combinatorial optimization problems can be formulated. The experimental results show that the proposed method outperforms the basic QEC quite significantly.</description><subject>Benchmarking</subject><subject>Combinatorial analysis</subject><subject>Convergence</subject><subject>Evolutionary algorithms</subject><subject>Optimization</subject><subject>Strategy</subject><issn>0256-307X</issn><issn>1741-3540</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNkEFLxDAQhYMouK7-BenNU91MkzbtUZdVFxZWcQVvYZqmUGmbmrS76K83peJFD8LAzMD3hnmPkEug10DTdEGjOAkZFa-LKFlA5Isyyo_IDASHkMWcHpPZD3RKzpx7oxQgBZgRXDedNXtdBE8Dtv3QBKu9qYe-Mi3aj2Bpmm7ocVyDW3Qe88Mj2r5StQ6eD2ibYNv1VVN9ThC2RbA7mHBpjXP-rnXn5KTE2umL7z4nL3er3fIh3Gzv18ubTagY8D4sIdZMMUpVlimmqYpzAQmPhRY5S1muoMA801orIVhSpCViCqiynOkcIeNsTq6mu97P-6BdL5vKKV3X2GozOJnyjAsAiD2ZTKQan7S6lJ2tGm9XApVjpHJMS45pySiREMkpUi-ESViZ7v-a8Lfmb1Z2Rcm-ADANiHI</recordid><startdate>20091201</startdate><enddate>20091201</enddate><creator>Duan, Hai-Bin</creator><creator>Xing, Zhi-Hui</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20091201</creationdate><title>Improved Quantum Evolutionary Computation Based on Particle Swarm Optimization and Two-Crossovers</title><author>Duan, Hai-Bin ; Xing, Zhi-Hui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-f15e3c300c99c3e0c5b716457e7b383bc1dab9eeec7736d8faa81ac9b3eba1943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Benchmarking</topic><topic>Combinatorial analysis</topic><topic>Convergence</topic><topic>Evolutionary algorithms</topic><topic>Optimization</topic><topic>Strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duan, Hai-Bin</creatorcontrib><creatorcontrib>Xing, Zhi-Hui</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chinese physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duan, Hai-Bin</au><au>Xing, Zhi-Hui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Quantum Evolutionary Computation Based on Particle Swarm Optimization and Two-Crossovers</atitle><jtitle>Chinese physics letters</jtitle><date>2009-12-01</date><risdate>2009</risdate><volume>26</volume><issue>12</issue><spage>120304</spage><epage>120304</epage><pages>120304-120304</pages><issn>0256-307X</issn><eissn>1741-3540</eissn><abstract>A quantum evolutionary computation (QEC) algorithm with particle swarm optimization (PSO) and two-crossovers is proposed to overcome identified limitations. PSO is adopted to update the Q-bit automatically, and two-crossovers are applied to improve the convergence quality in the basic QEC model. This hybrid strategy can effectively employ both the ability to jump out of the local minima and the capacity of searching the global optimum. The performance of the proposed approach is compared with basic QEC on the standard unconstrained scalable benchmark problem that numerous hard combinatorial optimization problems can be formulated. The experimental results show that the proposed method outperforms the basic QEC quite significantly.</abstract><pub>IOP Publishing</pub><doi>10.1088/0256-307X/26/12/120304</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0256-307X
ispartof Chinese physics letters, 2009-12, Vol.26 (12), p.120304-120304
issn 0256-307X
1741-3540
language eng
recordid cdi_proquest_miscellaneous_849471115
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects Benchmarking
Combinatorial analysis
Convergence
Evolutionary algorithms
Optimization
Strategy
title Improved Quantum Evolutionary Computation Based on Particle Swarm Optimization and Two-Crossovers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T04%3A46%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Quantum%20Evolutionary%20Computation%20Based%20on%20Particle%20Swarm%20Optimization%20and%20Two-Crossovers&rft.jtitle=Chinese%20physics%20letters&rft.au=Duan,%20Hai-Bin&rft.date=2009-12-01&rft.volume=26&rft.issue=12&rft.spage=120304&rft.epage=120304&rft.pages=120304-120304&rft.issn=0256-307X&rft.eissn=1741-3540&rft_id=info:doi/10.1088/0256-307X/26/12/120304&rft_dat=%3Cproquest_iop_p%3E849471115%3C/proquest_iop_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c314t-f15e3c300c99c3e0c5b716457e7b383bc1dab9eeec7736d8faa81ac9b3eba1943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=849471115&rft_id=info:pmid/&rfr_iscdi=true