Loading…
Mesoscale-structure control at anode/electrolyte interface in solid oxide fuel cell
To enhance the power density of a solid oxide fuel cell, a mesoscale-structure control of an electrode/electrolyte interface was proposed; here, the mesoscale means a size range of 10–100 μm, which is larger than the microscale of the electrode particles but smaller than the macroscale of the cell g...
Saved in:
Published in: | Journal of power sources 2011, Vol.196 (1), p.98-109 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c451t-9b56f415d4a0b4cc7fb15a7a662494cf8fbf2bb376ab9da76e99c5ce149251243 |
---|---|
cites | cdi_FETCH-LOGICAL-c451t-9b56f415d4a0b4cc7fb15a7a662494cf8fbf2bb376ab9da76e99c5ce149251243 |
container_end_page | 109 |
container_issue | 1 |
container_start_page | 98 |
container_title | Journal of power sources |
container_volume | 196 |
creator | Konno, Akio Iwai, Hiroshi Inuyama, Kenji Kuroyanagi, Atsushi Saito, Motohiro Yoshida, Hideo Kodani, Kazufumi Yoshikata, Kuniaki |
description | To enhance the power density of a solid oxide fuel cell, a mesoscale-structure control of an electrode/electrolyte interface was proposed; here, the mesoscale means a size range of 10–100
μm, which is larger than the microscale of the electrode particles but smaller than the macroscale of the cell geometries. Therefore, the mesoscale structure does not only change the local thickness of the electrolyte and electrode but also enlarge the electrode/electrolyte interface area, and thus influence the cell performance. First, to find effective conditions for the mesoscale-structure control, a preliminary theoretical analysis in a conventional flat cell was performed focusing on the ratio of the ion-conducting resistance to the reaction resistance. In the light of this basic knowledge, as a second step, the effects of the mesoscale structure on an anode side of an electrolyte-supported cell were studied numerically and experimentally. A 2D numerical simulation based on an equivalent electrical circuit model and the dusty-gas model was carried out. As a result, the mesoscale-grooved structure was found to be effective for enhancement of the power generation, if the groove scale is sufficiently larger than that of the active reaction region of the electrode. Qualitatively similar results were obtained from the experiments using a segmented electrode with both flat and mesoscale-grooved surface in a button-type cell. |
doi_str_mv | 10.1016/j.jpowsour.2010.07.025 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_849471767</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775310012085</els_id><sourcerecordid>1671271174</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-9b56f415d4a0b4cc7fb15a7a662494cf8fbf2bb376ab9da76e99c5ce149251243</originalsourceid><addsrcrecordid>eNqFkMFO3DAQhq2qSN0ufYUqF0QvCR4n9mxuVAgo0lY9AGfLccaSVyFe7KSFt8fRbnsspxmNvvln9DH2FXgFHNTFrtrtw58U5lgJnoccKy7kB7aCDdalQCk_shWvcVMiyvoT-5zSjnMOgHzF7n9SCsmagco0xdlOc6TChnGKYSjMVJgx9HRBA9ll8jpR4ceJojN26YoUBt8X4cX3VLiZhsLSMJyyE2eGRF-Odc0eb64frn6U21-3d1fft6VtJExl20nlGpB9Y3jXWIuuA2nQKCWatrFu4zonuq5GZbq2N6ioba20BE0rJIimXrPzQ-4-hueZ0qSffFoeMCOFOelNjkFAhZn89l8SFILAbGQJVQfUxpBSJKf30T-Z-KqB68W33um_vvXiW3PU2XdePDveMItPF81offq3LWqUAhRk7vLAUVbz21PUyXoaLfU-Zsu6D_69U2-x8psb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671271174</pqid></control><display><type>article</type><title>Mesoscale-structure control at anode/electrolyte interface in solid oxide fuel cell</title><source>ScienceDirect Freedom Collection</source><creator>Konno, Akio ; Iwai, Hiroshi ; Inuyama, Kenji ; Kuroyanagi, Atsushi ; Saito, Motohiro ; Yoshida, Hideo ; Kodani, Kazufumi ; Yoshikata, Kuniaki</creator><creatorcontrib>Konno, Akio ; Iwai, Hiroshi ; Inuyama, Kenji ; Kuroyanagi, Atsushi ; Saito, Motohiro ; Yoshida, Hideo ; Kodani, Kazufumi ; Yoshikata, Kuniaki</creatorcontrib><description>To enhance the power density of a solid oxide fuel cell, a mesoscale-structure control of an electrode/electrolyte interface was proposed; here, the mesoscale means a size range of 10–100
μm, which is larger than the microscale of the electrode particles but smaller than the macroscale of the cell geometries. Therefore, the mesoscale structure does not only change the local thickness of the electrolyte and electrode but also enlarge the electrode/electrolyte interface area, and thus influence the cell performance. First, to find effective conditions for the mesoscale-structure control, a preliminary theoretical analysis in a conventional flat cell was performed focusing on the ratio of the ion-conducting resistance to the reaction resistance. In the light of this basic knowledge, as a second step, the effects of the mesoscale structure on an anode side of an electrolyte-supported cell were studied numerically and experimentally. A 2D numerical simulation based on an equivalent electrical circuit model and the dusty-gas model was carried out. As a result, the mesoscale-grooved structure was found to be effective for enhancement of the power generation, if the groove scale is sufficiently larger than that of the active reaction region of the electrode. Qualitatively similar results were obtained from the experiments using a segmented electrode with both flat and mesoscale-grooved surface in a button-type cell.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2010.07.025</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Density ; Direct energy conversion and energy accumulation ; Electric circuits ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Electrodes ; Electrolytes ; Electrolytic cells ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Focusing ; Fuel cells ; Interface area enlargement ; Mathematical models ; Mesoscale structure ; Numerical simulation ; Single-cell experiment ; Solid oxide fuel cell ; Solid oxide fuel cells</subject><ispartof>Journal of power sources, 2011, Vol.196 (1), p.98-109</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-9b56f415d4a0b4cc7fb15a7a662494cf8fbf2bb376ab9da76e99c5ce149251243</citedby><cites>FETCH-LOGICAL-c451t-9b56f415d4a0b4cc7fb15a7a662494cf8fbf2bb376ab9da76e99c5ce149251243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23752161$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Konno, Akio</creatorcontrib><creatorcontrib>Iwai, Hiroshi</creatorcontrib><creatorcontrib>Inuyama, Kenji</creatorcontrib><creatorcontrib>Kuroyanagi, Atsushi</creatorcontrib><creatorcontrib>Saito, Motohiro</creatorcontrib><creatorcontrib>Yoshida, Hideo</creatorcontrib><creatorcontrib>Kodani, Kazufumi</creatorcontrib><creatorcontrib>Yoshikata, Kuniaki</creatorcontrib><title>Mesoscale-structure control at anode/electrolyte interface in solid oxide fuel cell</title><title>Journal of power sources</title><description>To enhance the power density of a solid oxide fuel cell, a mesoscale-structure control of an electrode/electrolyte interface was proposed; here, the mesoscale means a size range of 10–100
μm, which is larger than the microscale of the electrode particles but smaller than the macroscale of the cell geometries. Therefore, the mesoscale structure does not only change the local thickness of the electrolyte and electrode but also enlarge the electrode/electrolyte interface area, and thus influence the cell performance. First, to find effective conditions for the mesoscale-structure control, a preliminary theoretical analysis in a conventional flat cell was performed focusing on the ratio of the ion-conducting resistance to the reaction resistance. In the light of this basic knowledge, as a second step, the effects of the mesoscale structure on an anode side of an electrolyte-supported cell were studied numerically and experimentally. A 2D numerical simulation based on an equivalent electrical circuit model and the dusty-gas model was carried out. As a result, the mesoscale-grooved structure was found to be effective for enhancement of the power generation, if the groove scale is sufficiently larger than that of the active reaction region of the electrode. Qualitatively similar results were obtained from the experiments using a segmented electrode with both flat and mesoscale-grooved surface in a button-type cell.</description><subject>Applied sciences</subject><subject>Density</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electric circuits</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Focusing</subject><subject>Fuel cells</subject><subject>Interface area enlargement</subject><subject>Mathematical models</subject><subject>Mesoscale structure</subject><subject>Numerical simulation</subject><subject>Single-cell experiment</subject><subject>Solid oxide fuel cell</subject><subject>Solid oxide fuel cells</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkMFO3DAQhq2qSN0ufYUqF0QvCR4n9mxuVAgo0lY9AGfLccaSVyFe7KSFt8fRbnsspxmNvvln9DH2FXgFHNTFrtrtw58U5lgJnoccKy7kB7aCDdalQCk_shWvcVMiyvoT-5zSjnMOgHzF7n9SCsmagco0xdlOc6TChnGKYSjMVJgx9HRBA9ll8jpR4ceJojN26YoUBt8X4cX3VLiZhsLSMJyyE2eGRF-Odc0eb64frn6U21-3d1fft6VtJExl20nlGpB9Y3jXWIuuA2nQKCWatrFu4zonuq5GZbq2N6ioba20BE0rJIimXrPzQ-4-hueZ0qSffFoeMCOFOelNjkFAhZn89l8SFILAbGQJVQfUxpBSJKf30T-Z-KqB68W33um_vvXiW3PU2XdePDveMItPF81offq3LWqUAhRk7vLAUVbz21PUyXoaLfU-Zsu6D_69U2-x8psb</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Konno, Akio</creator><creator>Iwai, Hiroshi</creator><creator>Inuyama, Kenji</creator><creator>Kuroyanagi, Atsushi</creator><creator>Saito, Motohiro</creator><creator>Yoshida, Hideo</creator><creator>Kodani, Kazufumi</creator><creator>Yoshikata, Kuniaki</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>7ST</scope><scope>SOI</scope></search><sort><creationdate>2011</creationdate><title>Mesoscale-structure control at anode/electrolyte interface in solid oxide fuel cell</title><author>Konno, Akio ; Iwai, Hiroshi ; Inuyama, Kenji ; Kuroyanagi, Atsushi ; Saito, Motohiro ; Yoshida, Hideo ; Kodani, Kazufumi ; Yoshikata, Kuniaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-9b56f415d4a0b4cc7fb15a7a662494cf8fbf2bb376ab9da76e99c5ce149251243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Density</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electric circuits</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Focusing</topic><topic>Fuel cells</topic><topic>Interface area enlargement</topic><topic>Mathematical models</topic><topic>Mesoscale structure</topic><topic>Numerical simulation</topic><topic>Single-cell experiment</topic><topic>Solid oxide fuel cell</topic><topic>Solid oxide fuel cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Konno, Akio</creatorcontrib><creatorcontrib>Iwai, Hiroshi</creatorcontrib><creatorcontrib>Inuyama, Kenji</creatorcontrib><creatorcontrib>Kuroyanagi, Atsushi</creatorcontrib><creatorcontrib>Saito, Motohiro</creatorcontrib><creatorcontrib>Yoshida, Hideo</creatorcontrib><creatorcontrib>Kodani, Kazufumi</creatorcontrib><creatorcontrib>Yoshikata, Kuniaki</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Konno, Akio</au><au>Iwai, Hiroshi</au><au>Inuyama, Kenji</au><au>Kuroyanagi, Atsushi</au><au>Saito, Motohiro</au><au>Yoshida, Hideo</au><au>Kodani, Kazufumi</au><au>Yoshikata, Kuniaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mesoscale-structure control at anode/electrolyte interface in solid oxide fuel cell</atitle><jtitle>Journal of power sources</jtitle><date>2011</date><risdate>2011</risdate><volume>196</volume><issue>1</issue><spage>98</spage><epage>109</epage><pages>98-109</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>To enhance the power density of a solid oxide fuel cell, a mesoscale-structure control of an electrode/electrolyte interface was proposed; here, the mesoscale means a size range of 10–100
μm, which is larger than the microscale of the electrode particles but smaller than the macroscale of the cell geometries. Therefore, the mesoscale structure does not only change the local thickness of the electrolyte and electrode but also enlarge the electrode/electrolyte interface area, and thus influence the cell performance. First, to find effective conditions for the mesoscale-structure control, a preliminary theoretical analysis in a conventional flat cell was performed focusing on the ratio of the ion-conducting resistance to the reaction resistance. In the light of this basic knowledge, as a second step, the effects of the mesoscale structure on an anode side of an electrolyte-supported cell were studied numerically and experimentally. A 2D numerical simulation based on an equivalent electrical circuit model and the dusty-gas model was carried out. As a result, the mesoscale-grooved structure was found to be effective for enhancement of the power generation, if the groove scale is sufficiently larger than that of the active reaction region of the electrode. Qualitatively similar results were obtained from the experiments using a segmented electrode with both flat and mesoscale-grooved surface in a button-type cell.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2010.07.025</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-7753 |
ispartof | Journal of power sources, 2011, Vol.196 (1), p.98-109 |
issn | 0378-7753 1873-2755 |
language | eng |
recordid | cdi_proquest_miscellaneous_849471767 |
source | ScienceDirect Freedom Collection |
subjects | Applied sciences Density Direct energy conversion and energy accumulation Electric circuits Electrical engineering. Electrical power engineering Electrical power engineering Electrochemical conversion: primary and secondary batteries, fuel cells Electrodes Electrolytes Electrolytic cells Energy Energy. Thermal use of fuels Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology Focusing Fuel cells Interface area enlargement Mathematical models Mesoscale structure Numerical simulation Single-cell experiment Solid oxide fuel cell Solid oxide fuel cells |
title | Mesoscale-structure control at anode/electrolyte interface in solid oxide fuel cell |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T16%3A19%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mesoscale-structure%20control%20at%20anode/electrolyte%20interface%20in%20solid%20oxide%20fuel%20cell&rft.jtitle=Journal%20of%20power%20sources&rft.au=Konno,%20Akio&rft.date=2011&rft.volume=196&rft.issue=1&rft.spage=98&rft.epage=109&rft.pages=98-109&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2010.07.025&rft_dat=%3Cproquest_cross%3E1671271174%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c451t-9b56f415d4a0b4cc7fb15a7a662494cf8fbf2bb376ab9da76e99c5ce149251243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671271174&rft_id=info:pmid/&rfr_iscdi=true |