Loading…

Mesoscale-structure control at anode/electrolyte interface in solid oxide fuel cell

To enhance the power density of a solid oxide fuel cell, a mesoscale-structure control of an electrode/electrolyte interface was proposed; here, the mesoscale means a size range of 10–100 μm, which is larger than the microscale of the electrode particles but smaller than the macroscale of the cell g...

Full description

Saved in:
Bibliographic Details
Published in:Journal of power sources 2011, Vol.196 (1), p.98-109
Main Authors: Konno, Akio, Iwai, Hiroshi, Inuyama, Kenji, Kuroyanagi, Atsushi, Saito, Motohiro, Yoshida, Hideo, Kodani, Kazufumi, Yoshikata, Kuniaki
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c451t-9b56f415d4a0b4cc7fb15a7a662494cf8fbf2bb376ab9da76e99c5ce149251243
cites cdi_FETCH-LOGICAL-c451t-9b56f415d4a0b4cc7fb15a7a662494cf8fbf2bb376ab9da76e99c5ce149251243
container_end_page 109
container_issue 1
container_start_page 98
container_title Journal of power sources
container_volume 196
creator Konno, Akio
Iwai, Hiroshi
Inuyama, Kenji
Kuroyanagi, Atsushi
Saito, Motohiro
Yoshida, Hideo
Kodani, Kazufumi
Yoshikata, Kuniaki
description To enhance the power density of a solid oxide fuel cell, a mesoscale-structure control of an electrode/electrolyte interface was proposed; here, the mesoscale means a size range of 10–100 μm, which is larger than the microscale of the electrode particles but smaller than the macroscale of the cell geometries. Therefore, the mesoscale structure does not only change the local thickness of the electrolyte and electrode but also enlarge the electrode/electrolyte interface area, and thus influence the cell performance. First, to find effective conditions for the mesoscale-structure control, a preliminary theoretical analysis in a conventional flat cell was performed focusing on the ratio of the ion-conducting resistance to the reaction resistance. In the light of this basic knowledge, as a second step, the effects of the mesoscale structure on an anode side of an electrolyte-supported cell were studied numerically and experimentally. A 2D numerical simulation based on an equivalent electrical circuit model and the dusty-gas model was carried out. As a result, the mesoscale-grooved structure was found to be effective for enhancement of the power generation, if the groove scale is sufficiently larger than that of the active reaction region of the electrode. Qualitatively similar results were obtained from the experiments using a segmented electrode with both flat and mesoscale-grooved surface in a button-type cell.
doi_str_mv 10.1016/j.jpowsour.2010.07.025
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_849471767</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775310012085</els_id><sourcerecordid>1671271174</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-9b56f415d4a0b4cc7fb15a7a662494cf8fbf2bb376ab9da76e99c5ce149251243</originalsourceid><addsrcrecordid>eNqFkMFO3DAQhq2qSN0ufYUqF0QvCR4n9mxuVAgo0lY9AGfLccaSVyFe7KSFt8fRbnsspxmNvvln9DH2FXgFHNTFrtrtw58U5lgJnoccKy7kB7aCDdalQCk_shWvcVMiyvoT-5zSjnMOgHzF7n9SCsmagco0xdlOc6TChnGKYSjMVJgx9HRBA9ll8jpR4ceJojN26YoUBt8X4cX3VLiZhsLSMJyyE2eGRF-Odc0eb64frn6U21-3d1fft6VtJExl20nlGpB9Y3jXWIuuA2nQKCWatrFu4zonuq5GZbq2N6ioba20BE0rJIimXrPzQ-4-hueZ0qSffFoeMCOFOelNjkFAhZn89l8SFILAbGQJVQfUxpBSJKf30T-Z-KqB68W33um_vvXiW3PU2XdePDveMItPF81offq3LWqUAhRk7vLAUVbz21PUyXoaLfU-Zsu6D_69U2-x8psb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671271174</pqid></control><display><type>article</type><title>Mesoscale-structure control at anode/electrolyte interface in solid oxide fuel cell</title><source>ScienceDirect Freedom Collection</source><creator>Konno, Akio ; Iwai, Hiroshi ; Inuyama, Kenji ; Kuroyanagi, Atsushi ; Saito, Motohiro ; Yoshida, Hideo ; Kodani, Kazufumi ; Yoshikata, Kuniaki</creator><creatorcontrib>Konno, Akio ; Iwai, Hiroshi ; Inuyama, Kenji ; Kuroyanagi, Atsushi ; Saito, Motohiro ; Yoshida, Hideo ; Kodani, Kazufumi ; Yoshikata, Kuniaki</creatorcontrib><description>To enhance the power density of a solid oxide fuel cell, a mesoscale-structure control of an electrode/electrolyte interface was proposed; here, the mesoscale means a size range of 10–100 μm, which is larger than the microscale of the electrode particles but smaller than the macroscale of the cell geometries. Therefore, the mesoscale structure does not only change the local thickness of the electrolyte and electrode but also enlarge the electrode/electrolyte interface area, and thus influence the cell performance. First, to find effective conditions for the mesoscale-structure control, a preliminary theoretical analysis in a conventional flat cell was performed focusing on the ratio of the ion-conducting resistance to the reaction resistance. In the light of this basic knowledge, as a second step, the effects of the mesoscale structure on an anode side of an electrolyte-supported cell were studied numerically and experimentally. A 2D numerical simulation based on an equivalent electrical circuit model and the dusty-gas model was carried out. As a result, the mesoscale-grooved structure was found to be effective for enhancement of the power generation, if the groove scale is sufficiently larger than that of the active reaction region of the electrode. Qualitatively similar results were obtained from the experiments using a segmented electrode with both flat and mesoscale-grooved surface in a button-type cell.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2010.07.025</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Density ; Direct energy conversion and energy accumulation ; Electric circuits ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Electrodes ; Electrolytes ; Electrolytic cells ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Focusing ; Fuel cells ; Interface area enlargement ; Mathematical models ; Mesoscale structure ; Numerical simulation ; Single-cell experiment ; Solid oxide fuel cell ; Solid oxide fuel cells</subject><ispartof>Journal of power sources, 2011, Vol.196 (1), p.98-109</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-9b56f415d4a0b4cc7fb15a7a662494cf8fbf2bb376ab9da76e99c5ce149251243</citedby><cites>FETCH-LOGICAL-c451t-9b56f415d4a0b4cc7fb15a7a662494cf8fbf2bb376ab9da76e99c5ce149251243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23752161$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Konno, Akio</creatorcontrib><creatorcontrib>Iwai, Hiroshi</creatorcontrib><creatorcontrib>Inuyama, Kenji</creatorcontrib><creatorcontrib>Kuroyanagi, Atsushi</creatorcontrib><creatorcontrib>Saito, Motohiro</creatorcontrib><creatorcontrib>Yoshida, Hideo</creatorcontrib><creatorcontrib>Kodani, Kazufumi</creatorcontrib><creatorcontrib>Yoshikata, Kuniaki</creatorcontrib><title>Mesoscale-structure control at anode/electrolyte interface in solid oxide fuel cell</title><title>Journal of power sources</title><description>To enhance the power density of a solid oxide fuel cell, a mesoscale-structure control of an electrode/electrolyte interface was proposed; here, the mesoscale means a size range of 10–100 μm, which is larger than the microscale of the electrode particles but smaller than the macroscale of the cell geometries. Therefore, the mesoscale structure does not only change the local thickness of the electrolyte and electrode but also enlarge the electrode/electrolyte interface area, and thus influence the cell performance. First, to find effective conditions for the mesoscale-structure control, a preliminary theoretical analysis in a conventional flat cell was performed focusing on the ratio of the ion-conducting resistance to the reaction resistance. In the light of this basic knowledge, as a second step, the effects of the mesoscale structure on an anode side of an electrolyte-supported cell were studied numerically and experimentally. A 2D numerical simulation based on an equivalent electrical circuit model and the dusty-gas model was carried out. As a result, the mesoscale-grooved structure was found to be effective for enhancement of the power generation, if the groove scale is sufficiently larger than that of the active reaction region of the electrode. Qualitatively similar results were obtained from the experiments using a segmented electrode with both flat and mesoscale-grooved surface in a button-type cell.</description><subject>Applied sciences</subject><subject>Density</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electric circuits</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Focusing</subject><subject>Fuel cells</subject><subject>Interface area enlargement</subject><subject>Mathematical models</subject><subject>Mesoscale structure</subject><subject>Numerical simulation</subject><subject>Single-cell experiment</subject><subject>Solid oxide fuel cell</subject><subject>Solid oxide fuel cells</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkMFO3DAQhq2qSN0ufYUqF0QvCR4n9mxuVAgo0lY9AGfLccaSVyFe7KSFt8fRbnsspxmNvvln9DH2FXgFHNTFrtrtw58U5lgJnoccKy7kB7aCDdalQCk_shWvcVMiyvoT-5zSjnMOgHzF7n9SCsmagco0xdlOc6TChnGKYSjMVJgx9HRBA9ll8jpR4ceJojN26YoUBt8X4cX3VLiZhsLSMJyyE2eGRF-Odc0eb64frn6U21-3d1fft6VtJExl20nlGpB9Y3jXWIuuA2nQKCWatrFu4zonuq5GZbq2N6ioba20BE0rJIimXrPzQ-4-hueZ0qSffFoeMCOFOelNjkFAhZn89l8SFILAbGQJVQfUxpBSJKf30T-Z-KqB68W33um_vvXiW3PU2XdePDveMItPF81offq3LWqUAhRk7vLAUVbz21PUyXoaLfU-Zsu6D_69U2-x8psb</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Konno, Akio</creator><creator>Iwai, Hiroshi</creator><creator>Inuyama, Kenji</creator><creator>Kuroyanagi, Atsushi</creator><creator>Saito, Motohiro</creator><creator>Yoshida, Hideo</creator><creator>Kodani, Kazufumi</creator><creator>Yoshikata, Kuniaki</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>7ST</scope><scope>SOI</scope></search><sort><creationdate>2011</creationdate><title>Mesoscale-structure control at anode/electrolyte interface in solid oxide fuel cell</title><author>Konno, Akio ; Iwai, Hiroshi ; Inuyama, Kenji ; Kuroyanagi, Atsushi ; Saito, Motohiro ; Yoshida, Hideo ; Kodani, Kazufumi ; Yoshikata, Kuniaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-9b56f415d4a0b4cc7fb15a7a662494cf8fbf2bb376ab9da76e99c5ce149251243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Density</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electric circuits</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Focusing</topic><topic>Fuel cells</topic><topic>Interface area enlargement</topic><topic>Mathematical models</topic><topic>Mesoscale structure</topic><topic>Numerical simulation</topic><topic>Single-cell experiment</topic><topic>Solid oxide fuel cell</topic><topic>Solid oxide fuel cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Konno, Akio</creatorcontrib><creatorcontrib>Iwai, Hiroshi</creatorcontrib><creatorcontrib>Inuyama, Kenji</creatorcontrib><creatorcontrib>Kuroyanagi, Atsushi</creatorcontrib><creatorcontrib>Saito, Motohiro</creatorcontrib><creatorcontrib>Yoshida, Hideo</creatorcontrib><creatorcontrib>Kodani, Kazufumi</creatorcontrib><creatorcontrib>Yoshikata, Kuniaki</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Konno, Akio</au><au>Iwai, Hiroshi</au><au>Inuyama, Kenji</au><au>Kuroyanagi, Atsushi</au><au>Saito, Motohiro</au><au>Yoshida, Hideo</au><au>Kodani, Kazufumi</au><au>Yoshikata, Kuniaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mesoscale-structure control at anode/electrolyte interface in solid oxide fuel cell</atitle><jtitle>Journal of power sources</jtitle><date>2011</date><risdate>2011</risdate><volume>196</volume><issue>1</issue><spage>98</spage><epage>109</epage><pages>98-109</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>To enhance the power density of a solid oxide fuel cell, a mesoscale-structure control of an electrode/electrolyte interface was proposed; here, the mesoscale means a size range of 10–100 μm, which is larger than the microscale of the electrode particles but smaller than the macroscale of the cell geometries. Therefore, the mesoscale structure does not only change the local thickness of the electrolyte and electrode but also enlarge the electrode/electrolyte interface area, and thus influence the cell performance. First, to find effective conditions for the mesoscale-structure control, a preliminary theoretical analysis in a conventional flat cell was performed focusing on the ratio of the ion-conducting resistance to the reaction resistance. In the light of this basic knowledge, as a second step, the effects of the mesoscale structure on an anode side of an electrolyte-supported cell were studied numerically and experimentally. A 2D numerical simulation based on an equivalent electrical circuit model and the dusty-gas model was carried out. As a result, the mesoscale-grooved structure was found to be effective for enhancement of the power generation, if the groove scale is sufficiently larger than that of the active reaction region of the electrode. Qualitatively similar results were obtained from the experiments using a segmented electrode with both flat and mesoscale-grooved surface in a button-type cell.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2010.07.025</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-7753
ispartof Journal of power sources, 2011, Vol.196 (1), p.98-109
issn 0378-7753
1873-2755
language eng
recordid cdi_proquest_miscellaneous_849471767
source ScienceDirect Freedom Collection
subjects Applied sciences
Density
Direct energy conversion and energy accumulation
Electric circuits
Electrical engineering. Electrical power engineering
Electrical power engineering
Electrochemical conversion: primary and secondary batteries, fuel cells
Electrodes
Electrolytes
Electrolytic cells
Energy
Energy. Thermal use of fuels
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Focusing
Fuel cells
Interface area enlargement
Mathematical models
Mesoscale structure
Numerical simulation
Single-cell experiment
Solid oxide fuel cell
Solid oxide fuel cells
title Mesoscale-structure control at anode/electrolyte interface in solid oxide fuel cell
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T16%3A19%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mesoscale-structure%20control%20at%20anode/electrolyte%20interface%20in%20solid%20oxide%20fuel%20cell&rft.jtitle=Journal%20of%20power%20sources&rft.au=Konno,%20Akio&rft.date=2011&rft.volume=196&rft.issue=1&rft.spage=98&rft.epage=109&rft.pages=98-109&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2010.07.025&rft_dat=%3Cproquest_cross%3E1671271174%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c451t-9b56f415d4a0b4cc7fb15a7a662494cf8fbf2bb376ab9da76e99c5ce149251243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671271174&rft_id=info:pmid/&rfr_iscdi=true