Loading…
A first study of the high-temperature plasticity of ceria-doped zirconia polycrystals
Ceria–zirconia ceramic alloys were sintered by high-temperature annealing, considering several synthesis temperatures to obtain a full-dense ceria–zirconia ceramic material using a temperature as low as possible. It was found that fully density is achieved at temperatures of 1450 °C. Monolithic spec...
Saved in:
Published in: | Journal of the European Ceramic Society 2010-12, Vol.30 (16), p.3357-3362 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Ceria–zirconia ceramic alloys were sintered by high-temperature annealing, considering several synthesis temperatures to obtain a full-dense ceria–zirconia ceramic material using a temperature as low as possible. It was found that fully density is achieved at temperatures of 1450
°C.
Monolithic specimens were crept under compression at high temperatures. The creep results fitted an empirical constitutive equation consistent with a classical Ratchinger mechanism for grain switching. This result was confirmed through microstructural characterization of as-received and post-mortem specimens. Since the conventional Ashby–Verrall model is contrary to the mechanism controlling creep in other zirconia alloys, the results are considered in the framework of a new grain boundary sliding model, with particular discussion of the validity of that model for the ceria–zirconia case. |
---|---|
ISSN: | 0955-2219 1873-619X |
DOI: | 10.1016/j.jeurceramsoc.2010.07.043 |