Loading…
Concise Derivation of Scattering Function from Channel Entropy Maximization
In order to provide a concise time-varying SISO channel model, the principle of maximum entropy is applied to scattering function derivation. The resulting model is driven by few parameters that are expressed as moments such as the channel average power or the Doppler spread. Physical interpretation...
Saved in:
Published in: | IEEE transactions on communications 2010-11, Vol.58 (11), p.3098-3103 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In order to provide a concise time-varying SISO channel model, the principle of maximum entropy is applied to scattering function derivation. The resulting model is driven by few parameters that are expressed as moments such as the channel average power or the Doppler spread. Physical interpretations of the model outputs are discussed. In particular, it is shown that common Doppler spectra such as the flat or the Jakes spectrum fit well into the maximum entropy framework. The Matlab code corresponding to the proposed model is available at http://perso.telecom-bretagne.eu/fxsocheleau/software. |
---|---|
ISSN: | 0090-6778 1558-0857 |
DOI: | 10.1109/TCOMM.2010.091310.090247 |